Skip to main content
Log in

Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2PLSM:

Two-photon or multiphoton laser scanning microscopy

%Area:

Total aggregates projected area distribution by equivalent diameter ranges

%Nb:

Total number of aggregates distribution by equivalent diameter ranges

A :

Aggregate area

a L :

Aggregates length

a Nb :

Number of aggregates

ANN:

Artificial neural network

AR:

Aspect ratio

A spec < 0.2 mm:

Specific aggregate area for aggregates of D eq < 0.2 mm

A spec ≥ 0.2 mm:

Specific aggregate area for aggregates of D eq ≥ 0.2 mm

B:

Blue level of a pixel

BMP:

Windows bitmap

CA:

Cluster analysis

CARD-FISH:

Catalysed reporter deposition fluorescence in situ hybridization

CCD:

Charge Coupled Device

CF:

Compactness factor

CLSM:

Confocal Laser Scanning Microscopy

CMOS:

Complementary Metal Oxide Semiconductor

COD:

Chemical oxygen demand

Conv:

Convexity

DA:

Discriminant analysis

DAPI:

4’,6’-diamidino-2-phenylindole

D eq :

Aggregate Equivalent diameter

Ecc:

Eccentricity

EF:

Elongation factor

e Fil :

Filamentous fraction

e flocs :

Flocs fraction

e microflocs :

Microflocs fraction

EGSB:

Expanded Granular Sludge Bed

EPS:

Extracellular polymeric substances

Ext:

Extent

FD:

Fractal dimension

ferD:

Feret diameter

FF:

Form factor

FISH:

Fluorescence in situ hybridization

F max :

Maximum feret diameter

fNb:

Filaments number

freefNb:

Free filaments number

GAO:

Glycogen accumulating organisms

HCF:

Heywood circularity factor

HSL:

Hue saturation and lightness channels

JPEG:

Joint photographers expert group format

LD:

Load Disturbance

LfA:

Total filament length per total aggregates projected area

L fi :

Total Filaments length per image

LSM:

Laser scanning microscopy

L spec :

Specific total filament length

M1X, M1Y:

First order moments

M2X, M2Y:

Second order moments

MRI:

Magnetic resonance imaging

N class :

Sum of any individual object/aggregate within a particular class

N obj :

Pixel sum of any individual object/aggregate

OLR:

Organic Loading Rate

P :

Aggregates perimeter

PAO:

Phosphate accumulating organisms

P conv :

Convex envelope perimeter

PCA:

Principal components analysis

PHA:

Poly-β-hydroxyalcanoate

PHB:

Poly-β-hydroxybutyrate

PLS:

Partial least squares regression

PSD:

Pore size distribution

R :

Red level of a pixel

Rec%:

Area recognition percentage

Rb:

Robustness

Rg:

Reduced radius of gyration

RGB:

Red green and blue channels

Ro:

Roundness

SAA:

Specific Acetoclastic Activity

SBR:

Sequencing batch reactor

SDS:

Sodium Dodecyl Sulfate

Sol:

Solidity

SRT:

Sludge retention time

SS:

Suspended Solids

SVI:

Sludge volume index

TA:

Total aggregates area

TIFF:

Tagged image file format

TL:

Total filaments length

TL/TA:

Ratio between total filaments length and total aggregates area

TL/TSS:

Total filament length per total suspended solids

TL/VSS:

Total filament length per volatile suspended solids

TSS:

Total suspended solids

TV:

Total particles volume

UASB:

Up-flow anaerobic sludge blanket

UFBR:

Up flow anaerobic fixed bed reactor

VSS:

Volatile suspended solids

VSS/TA:

Volatile suspended solids per total aggregates projected area

W :

Aggregates width

WWT:

Wastewater treatment

WWTP:

Wastewater treatment plant

X biomass :

Sludge concentration

X ni, y ni :

Coordinates of each objects pixels

References

  • Abreu AA, Costa JC, Araya-Kroff P, Ferreira EC, Alves MM (2007) Quantitative image analysis as a diagnostic tool for identifying structural changes during a revival process of anaerobic granular sludge. Water Res 41:1473–1480

    Article  CAS  Google Scholar 

  • Abreu AA, Alves JI, Pereira MA, Sousa DZ, Alves MM (2011) Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge. Biotechnol Bioeng 108:1766–1775

    Article  CAS  Google Scholar 

  • Ahn Y-H (2000) Physicochemical and microbial aspects of anaerobic granular pellets. J Environ Sci Health A 35:1617–1635

    Article  Google Scholar 

  • Ahn Y-H, Speece R (2003) Settleability assessment protocol for anaerobic granular sludge and its application. Water SA 29:419–426

    CAS  Google Scholar 

  • Alinsafi A, da Motta M, Le Bonté S, Pons M-N, Benhammou A (2006) Effect of variability on the treatment of textile dyeing wastewater by activated sludge. Dyes Pigments 69:31–39

    Article  CAS  Google Scholar 

  • Alves MM, Cavaleiro AJ, Ferreira EC, Amaral AL, Mota M, da Motta M, Vivier H, Pons M-N (2000) Characterisation by image analysis of anerobic sludge under shock conditions. Water Sci Technol 41:207–214

    CAS  Google Scholar 

  • Amann R, Lemmer H, Wagner M (1998) Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiol Ecol 25:205–2015

    Article  CAS  Google Scholar 

  • Amaral AL (1998) Desenvolvimento de Técnicas de Análise de Imagem para Aplicação em Processos Biotecnológicos. MsC dissertation, University of Minho. http://hdl.handle.net/1822/175

  • Amaral AL (2003) Image analysis in biotechnological processes: application to wastewater treatment. PhD dissertation, University of Minho. http://hdl.handle.net/1822/4506

  • Amaral AL, Ferreira EC (2005) Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression. Anal Chim Acta 544:246–253

    Article  CAS  Google Scholar 

  • Amaral AL, Nicolau A, Ferreira EF, Lima N, Mota M (1998) Mobility assessment of the ciliated Tetrahymena pyriformis after exposition to toxic compounds using image analysis. IV Iberian Congress on Biotechnology/I Ibero-American Meeting on Biotechnology 322

  • Amaral AL, Baptiste C, Pons M-N, Nicolau A, Lima N, Ferreira EC, Mota M, Vivier H (1999) Semi-automated recognition of protozoa by image analysis. Biotechnol Tech 13:111–118

    Article  CAS  Google Scholar 

  • Amaral AL, da Motta M, Pons M-N, Vivier H, Roche N, Mota M, Ferreira EC (2004a) Survey of protozoa and metazoa populations in wastewater treatment plants by image analysis and discriminant analysis. Environmetrics 15:381–390

    Article  Google Scholar 

  • Amaral AL, Pereira MA, da Motta M, Pons M-N, Mota M, Ferreira EC, Alves MM (2004b) Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: I. Application to a granule deterioration process triggered by contact with oleic acid. Biotechnol Bioeng 87:194–199

    Article  CAS  Google Scholar 

  • Amaral AL, Mesquita DP, Ferreira EC (2010a) Predicting SVI from activated sludge systems in different operating conditions through quantitative image analysis. 2º Encontro do Institute of Biotechnology and Bioengineering, 63

  • Amaral AL, Mesquita DP, Ferreira EC (2010b) Distinção de fenómenos de bulking em lamas activadas por técnicas de análise de imagem. 14º Encontro Nacional de Saneamento Básico / Simpósio Luso-Brasileiro de Engenharia Sanitária e Ambiental (in Portuguese)

  • Araya-Kroff P, Amaral AL, Neves L, Ferreira EC, Pons M-N, Mota M, Alves MM (2004) Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: I. Application to a granulation process. Biotechnol Bioeng 87:184–193

    Article  CAS  Google Scholar 

  • Arelli A, Luccarini L, Madoni P (2009) Application of image analysis in activated sludge to evaluate correlations between settleability and features of flocs and filamentous species. Wat Sci Technol 59:2029–2036

    Google Scholar 

  • Banadda EN, Smets IY, Jenné R, Van Impe JF (2005) Predicting the onset of filamentous bulking in biological wastewater treatment systems by exploiting image analysis information. Bioprocess Biosyst Eng 27:339–348

    Article  CAS  Google Scholar 

  • Bellouti M, Alves MM, Novais JM, Mota M (1997) Flocs vs granules: differentiation by fractal dimension. Water Res 31:1227–1231

    Article  CAS  Google Scholar 

  • Beun JJ, van Loosdrecht MCM, Heijnen JJ (2002) Aerobic granulation in a sequencing batch airlift reactor. Water Res 36:702–712

    Article  CAS  Google Scholar 

  • Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Threedimensional biofilm structure quantification. J Microbiol Meth 59:395–413

    Article  CAS  Google Scholar 

  • Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Evol Microbiol 46:344–346

    CAS  Google Scholar 

  • Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V, Seviour RJ (2000) ‘Candidatus Nostocoida limicola’, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 50:703–709

    Article  CAS  Google Scholar 

  • Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Meth 37:77–86

    Article  CAS  Google Scholar 

  • Bradford D, Hugenholtz P, Seviour EM, Cunningham MA, Stratton H, Seviour RJ, Blackall LL (1996) 16S rRNA analysis of isolates obtained from Gram-negative, filamentous bacteria micromanipulated from activated sludge. Syst Appl Microbiol 19:334–343

    Article  Google Scholar 

  • Carvalho G, Lemos PC, Oehmen A, Reis MAM (2007) Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Res 41:4383–4396

    Article  CAS  Google Scholar 

  • Casellas M, Dagot C, Pons M-N, Guibaud G, Tixier N, Baudu M (2004) Characterisation of the structural state of flocculent microorganisms in relation to the purificatory performances of sequencing batch reactors. Biochem Eng J 21:171–181

    Article  CAS  Google Scholar 

  • Cenens C, Jenné R, Van Impe JF (2002) Evaluation of different shape parameters to distinguish between flocs and filaments in activated sludge images. Water Sci Technol 45(4–5):85–91

    CAS  Google Scholar 

  • Chu CP, Tsai DG, Lee DJ, Tay JH (2005) Size-dependent anaerobic digestion rates of flocculated activated sludge: role of intrafloc mass transfer resistance. J Environ Manage 76:239–244

    Article  CAS  Google Scholar 

  • Chung HY, Lee DJ (2003) Porosity and interior structure of flocculated activated sludge floc. J Colloid Interf Sci 267:136–143

    Article  CAS  Google Scholar 

  • Contreras EM, Giannuzzi L, Zaritzky NE (2004) Use of image analysis in the study of competition between filamentous and non-filamentous bacteria. Water Res 38:2621–2630

    Article  CAS  Google Scholar 

  • Costa JC (2008) Supervision of transient anaerobic granular sludge process through quantitative image analysis and multivariate statistical techniques. PhD dissertation, University of Minho, http://hdl.handle.net/1822/8504

  • Costa JC, Abreu AA, Ferreira EC, Alves MM (2007) Quantitative image analysis as a diagnostic tool for monitoring structural changes of anaerobic granular sludge during detergent shock loads. Biotechnol Bioeng 98:60–68

    Article  CAS  Google Scholar 

  • Costa JC, Moita I, Abreu AA, Ferreira EC, Alves MM (2009a) Advanced monitoring of high rate anaerobic reactors through quantitative image analysis of granular sludge and multivariate statistical analysis. Biotechnol Bioeng 102:445–456

    Article  CAS  Google Scholar 

  • Costa JC, Moita I, Ferreira EC, Alves MM (2009b) Morphology and physiology of anaerobic granular sludge exposed to organic solvents. J Hazard Mater 167:393–398

    Article  CAS  Google Scholar 

  • Costa JC, Alves MM, Ferreira EC (2009c) Principal Component Analysis and quantitative image analysis to predict effects of toxics in anaerobic granular sludge. Bioresour Technol 100:1180–1185

    Article  CAS  Google Scholar 

  • Costa JC, Alves MM, Ferreira EC (2010) A chemometric tool to monitor high-rate anaerobic granular sludge reactors during load and toxic disturbances. Biochem Eng J 53:38–43

    Article  CAS  Google Scholar 

  • da Motta M, Pons M-N, Vivier H, Amaral AL, Ferreira EC, Roche N, Mota M (2001a) The study of protozoa population in wastewater treatment plants by image analysis. Braz J Chem Eng 18:103–111

    Article  Google Scholar 

  • da Motta M, Pons M-N, Roche N, Vivier H (2001b) Characterisation of activated sludge by automated image analysis. Biochem Eng J 9:165–173

    Article  Google Scholar 

  • da Motta M, Amaral AL, Casellas M, Pons MN, Dagot C, Roche N, Ferreira EC, Vivier H (2002a) Characterisation of activated sludge by automated image analysis: validation on full-scale plants. In: Perrier M, Dochain D (eds) Computer applications in biotechnology. Pergamon, Oxford, pp 427–431

    Google Scholar 

  • da Motta M, Amaral AL, Neves L, Araya-Koff P, Ferreira EC, Alves MM, Mota M, Roche N, Vivier H, Pons MN (2002b) Dilution effects on biomass characterization by image analysis. In Proceedings of the 14th Brazilian Congress on Chemical Engineering, Natal, Brazil, p. 9, CD-ROM

  • da Motta M, Pons MN, Roche N, Vivier H, Amaral AL, Ferreira EC, Mota M (2003a) Estudo de Funcionamento de Estações de Tratamento de Esgotos por Análise de Imagem: Validações e Estudo de Caso. Eng Sanit Ambient 8(13):170–181 (in portuguese)

    Google Scholar 

  • da Motta M, Pons M-N, Roche N (2003b) Monitoring filamentous bulking in activated sludge systems fed by synthetic or municipal wastewater. Bioprocess Biosyst Eng 25:387–393

    Article  CAS  Google Scholar 

  • de los Reyes FL, Ritter W, Raskin L (1997) Group-specific small-subunit rRNA hybridization probes to characterise filamentous foaming in activated sludge systems. Appl Environ Microbiol 63:1107–1117

    Google Scholar 

  • Daims H, Wagner M (2007) Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl Microbiol Biotechnol 75:237–248

    Article  CAS  Google Scholar 

  • Daims H, Lucker S, Wagner M (2006) Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213

    Article  CAS  Google Scholar 

  • Davenport RJ, Curtis TP, Goodfellow M, Stainsby FM, Bingley M (2000) Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants. Appl Environ Microbiol 66:1158–1166

    Article  CAS  Google Scholar 

  • Dougherty ER (1994) Digital Image Processing Methods. Marcel Dekker Inc.

  • Dudley BT, Howgrave-Grahm AR, Bruton AG, Wallis FM (1993) Image analysis to quantify and measure UASB digester granules. Biotechnol Bioeng 42:279–283

    Article  CAS  Google Scholar 

  • Eikelboom DH (2000) Process control of activated sludge plants by microscopic investigation. IWA, London

    Google Scholar 

  • Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of ''Microthrix parvicella'' in activated sludge. Syst Appl Microbiol 20:310–318

    Article  Google Scholar 

  • Foster S, Snape JR, Lappin-Scott HM, Porter J (2002) Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria. Appl Environ Microbiol 68:4772–4779

    Article  CAS  Google Scholar 

  • Galindo E, Larralde-Corona C, Brito T, Córdova-Aguilar MS, Taboada B, Vega-Alvarado L, Corkidi G (2005) Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors. J Biotechnol 116:261–270

    Article  CAS  Google Scholar 

  • Ganczarczyk JJ (1994) Microbial aggregates in wastewater treatment. Water Sci Technol 30(8):87–95

    CAS  Google Scholar 

  • Ginoris YP, Amaral AL, Nicolau A, Coelho MAZ, Ferreira EC (2007a) Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system. Water Res 41:2581–2589

    Article  CAS  Google Scholar 

  • Ginoris YP, Amaral AL, Nicolau A, Coelho MAZ, Ferreira EC (2007b) Recognition of protozoa and metazoa using image analysis tools, discriminant analysis, neural networks and decision trees. Anal Chim Acta 595:160–169

    Article  CAS  Google Scholar 

  • Glasbey CA, Horgan GW (1995) Image analysis for the biological sciences. Wiley, Chichester

    Google Scholar 

  • Govoreanu R, Vandegehuchte K, Saveyn H, Nopens I, De Clercq B, van der Meeren P, Vanrolleghem PA (2002) An automated image analysis system for on-line structural characterization of the activated sludge flocs. Med Fac Landbouwkd Univ Gent 67:175–178

    Google Scholar 

  • Grijspeerdt K, Verstraete W (1997) Image analysis to estimate the settleability and concentration of activated sludge. Water Res 31:1126–1134

    Article  CAS  Google Scholar 

  • He W, Nan J, Li H, Li S (2012) Characteristic analysis on temporal evolution of floc size and structure in low-shear flow. Water Res 46:509–520

    Article  CAS  Google Scholar 

  • Heine W, Sekoulov I, Burkhardt H, Bergen L, Behrendt J (2002) Early warning-system for operation-failures in biological stages of WWTPs by on-line image analysis. Water Sci Technol 46(4–5):117–124

    CAS  Google Scholar 

  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Google Scholar 

  • Howgrave-Graham AR, Wallis FM (1993) Quantification of bacterial morphotypes within anaerobic digester granules from transmision electron micrographs using image analysis. Biotechnol Tech 7:143–148

    Article  Google Scholar 

  • Hug T, Gujer W, Siegrist H (2005) Rapid quantification of bacteria in activated sludge using fluorescence in situ hybridization and epifluorescence microscopy. Water Res 39:3837–3848

    Article  CAS  Google Scholar 

  • Invitrogen Molecular Probes (2004) LIVE/DEAD® BacLight™ bacterial viability kits. Manuals and product inserts. http://probes.invitrogen.com/media/pis/mp07007.pdf

  • Invitrogen Molecular Probes (2011) LIVE BacLight™ bacterial Gram stain kit (L-7005). Manuals and product inserts. http://tools.invitrogen.com/content/sfs/manuals/mp07008.pdf

  • Jeison D, Chamy R (1998) Novel technique for measuring the size distribution of granules from anaerobic reactors for wastewater treatment. Biotechnol Tech 12:659–662

    Article  CAS  Google Scholar 

  • Jenkins D, Richard MG, Daigger G (2003) Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems. Lewis, Boca Raton

    Google Scholar 

  • Jenné R, Cenens C, Geeraerd AH, Van Impe JF (2002) Towards on-line quantification of flocs and filaments by image analysis. Biotechnol Lett 24:931–935

    Article  Google Scholar 

  • Jenné R, Banadda EN, Philips N, Van Impe JF (2003) Image analysis as a monitoring tool for activated sludge properties in lab-scale installations. J Environ Sci Health A 38(10):2009–2018

    Article  CAS  Google Scholar 

  • Jenné R, Banadda EN, Smets IY, Van Impe JF (2004) Monitoring activated sludge settling properties using image analysis. Water Sci Technol 50:281–285

    Google Scholar 

  • Jenné R, Banadda EN, Gins G, Deurinck J, Smets IY, Geeraerd AH, Van Impe JF (2006) Use of image analysis for sludge characterisation: studying the relation between floc shape and sludge settleability. Water Sci Technol 54:167–174

    Google Scholar 

  • Jenné R, Banadda EN, Smets IY, Deurinck J, Van Impe JF (2007) Detection of filamentous bulking problems: developing an image analysis system for sludge composition monitoring. Microsc Microanal 13:36–41

    Article  CAS  Google Scholar 

  • Jin B, Wilén BM, Lant P (2003) Comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem Eng J 95:221–234

    Article  CAS  Google Scholar 

  • Kanagawa T, Kamagata Y, Aruga S, Kohno T, Horn M, Wagner M (2000) Phylogenetic analysis of and oligonucleotide probe development for eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl Environ Microbiol 66:5043–5052

    Article  CAS  Google Scholar 

  • Kuehn M, Hausner M, Bungartz H-J, Wagner M, Wilderer PA, Wuertz S (1998) Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64:4115–4127

    CAS  Google Scholar 

  • Larsen P, Nielsen JL, Otsen D, Nielsen PH (2008) Amyloid-like adhesions produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74:1517–1526

    Article  CAS  Google Scholar 

  • Lawrence JR, Wolfaardt GM, Neu TR (1998) The study of biofilms using confocal laser scanning microscopy. In: Wilkinson MHF, Schut F (eds) Digital image analysis of microbes. Wiley, New York

    Google Scholar 

  • Lettinga G (2001) Digestion and degradation, air for life. Water Sci Technol 44(8):157–176

    CAS  Google Scholar 

  • Levantesi C, Serafim LS, Crocetti GR, Lemos PC, Rossetti S, Blackall LL, Reis MAM, Tandoi V (2002) Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor. Environ Microbiol 4:559–569

    Article  CAS  Google Scholar 

  • Liao BQ, Droppo IG, Leppard GG, Liss SN (2006) Effect of solids retention time on structure and characteristics of sludge flocs in sequencing batch reactors. Water Res 40:2583–2591

    Article  CAS  Google Scholar 

  • Liu JR, McKenzie CA, Seviour EM, Webb RI, Blackall LL, Saint CP, Seviour RJ (2001a) Phylogeny of the filamentous bacterium ‘Nostocoida limicola’ III from activated sludge. Int J Syst Evol Microbiol 51:195–202

    CAS  Google Scholar 

  • Liu J, Dazzo FB, Glagoleva O, Yu B, Jain AK (2001b) CMEIAS: a computer-aided system for the image analyis of bacterial morphotypes in microbial communities. Microb Ecol 41:173–194

    Google Scholar 

  • Liu L, Sheng GP, Liu ZF, Li WW, Zeng RJ, Lee DJ, Liu JX, Yu HQ (2009a) An image-based method for obtaining pore-size distribution of porous media. Environ Sci Technol 43:3248–3253

    Article  CAS  Google Scholar 

  • Liu XW, Sheng GP, Yu HQ (2009b) Physicochemical characteristics of microbial granules. Biotechnol Adv 27:1061–1070

    Article  CAS  Google Scholar 

  • Liu L, Sheng G-P, Liu Z-F, Li W-W, Zeng RJ, Lee D-J, Liu J-X, Yu H-Q (2010) Characterization of multiporous structure and oxygen transfer inside aerobic granules with the percolation model. Environ Sci Technol 44:8535–8540

    Google Scholar 

  • Liwarska-Bizukojc E (2005) Application of image analysis techniques in activated sludge wastewater treatment processes. Biotechnol Lett 27:1427–1433

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc E, Bizukojc M (2005) Digital image analysis to estimate the influence of sodium dodecyl sulphate on activated sludge flocs. Process Biochem 40:2067–2072

    Article  CAS  Google Scholar 

  • Lopez C, Pons M-N, Morgenroth E (2005) Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge. Water Res 39:456–468

    Article  CAS  Google Scholar 

  • Louvet JN, Heluin Y, Attik G, Dumas D, Potier O, Pons MN (2010) Assessment of erythromycin toxicity on activated sludge via batch experiments and microscopic techniques (epifluorescence and CLSM). Process Biochem 45:1787–1794

    Article  CAS  Google Scholar 

  • Lupini G, Proia L, Di Maio M, Amalfitano S, Fazi S (2011) CARD-FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms. J Microbiol Meth 86:248–251

    Article  Google Scholar 

  • Madoni P (1994a) A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res 28:67–75

    Article  CAS  Google Scholar 

  • Madoni P (1994b) La microfauna nell’analisi di qualita’ biologica dei fanghi attivi. Manuale di Applicazione, Azienda Gas Acqua Consorziale di Reggio Emilia, Universtità degli Studi di Parma (in italian).

  • Mamane H, Kohn C, Adin A (2008) Characterizing shape of effluent particles by image analysis. Sep Sci Technol 43(7):1737–1753

    Article  CAS  Google Scholar 

  • Maruhashi F, Murakami S, Baba K (1994) Automated monitoring of cell concentration and viability using an image-analysis system. Cytotechnology 15:281–289

    Article  CAS  Google Scholar 

  • Merod RT, Warren JE, McCaslin H, Wuertz S (2007) Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. Appl Environ Microbiol 73:4922–4930

    Article  CAS  Google Scholar 

  • Mesquita DP, Dias O, Dias AMA, Amaral AL, Ferreira EC (2009a) Correlation between sludge settling ability and image analysis information using partial least squares. Anal Chim Acta 642:94–101

    Article  CAS  Google Scholar 

  • Mesquita DP, Amaral AL, Ferreira EC, Coelho MAZ (2009b) Study of saline wastewater influence on activated sludge flocs through automated image analysis. J Chem Technol Biotechnol 84:554–560

    Article  CAS  Google Scholar 

  • Mesquita DP, Dias O, Amaral AL, Ferreira EC (2009c) Monitoring of activated sludge settling ability through image analysis: validation on full-scale wastewater treatment plants. Bioprocess Biosyst Eng 32:361–367

    Article  CAS  Google Scholar 

  • Mesquita DP, Dias O, Amaral AL, Ferreira EC (2010a) A comparison between bright field and phase contrast image analysis techniques in activated sludge morphological characterization. Microsc Microanal 16:166–174

    Article  CAS  Google Scholar 

  • Mesquita DP, Dias O, Elias RAV, Amaral AL, Ferreira EC (2010b) Dilution and magnification effects on image analysis applications in activated sludge characterization. Microsc Microanal 16:561–568

    Article  CAS  Google Scholar 

  • Mesquita DP, Amaral AL, Ferreira EC (2011a) Identifying different types of bulking in an activated sludge system through quantitative image analysis. Chemosphere 85:643–652

    Article  CAS  Google Scholar 

  • Mesquita DP, Amaral AL, Ferreira EC (2011b) Characterization of activated sludge abnormalities by image analysis and chemometric techniques. Anal Chim Acta 705:235–242

    Article  CAS  Google Scholar 

  • Mesquita DP, Leal C, Cunha JR, Oehmen A, Amaral AL, Reis MAM, Ferreira EC (2013) Prediction of intracellular storage polymers using quantitative image analysis in enhanced biological phosphorus removal systems. Anal Chim Acta 770:36–44

    Article  CAS  Google Scholar 

  • Mu Y, Yu H-Q (2006a) Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. Water Res 40:3596–3602

    Article  CAS  Google Scholar 

  • Mu Y, Yu H-Q (2006b) Biological hydrogen production in a UASB reactor with granules. I. Physicochemical characteristics of hydrogen-producing granules. Biotechnol Bioeng 94:980–987

    Article  CAS  Google Scholar 

  • Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB (2006) Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol 6:1

    Article  CAS  Google Scholar 

  • Neu TR, Lawrence JR (2005) One-photon versus two-photon laser scanning microscopy and digital image analysis of microbial biofilms. Method Microbiol 34:87–134

    Google Scholar 

  • Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72:1–21

    Article  CAS  Google Scholar 

  • Noesis (1998) Visilog 5 documentation set

  • Nixon MS, Aguado AS (2002) Feature extraction and image processing. Reed Elsevier, Newnes (ISBN 0 7506 5078 8)

  • Pandolfi D, Pons M-N (2004) Gram-staining characterisation of activated sludge filamentous bacteria by automated colour analysis. Biotechnol Lett 26:1841–1846

    Article  CAS  Google Scholar 

  • Pandolfi D, Pons M-N, da Motta M (2007) Characterisation of PHB storage in activated sludge extended filamentous bacteria by automated colour image analysis. Biotechnol Lett 29:1263–1269

    Article  CAS  Google Scholar 

  • Pereira MA, Roest K, Stams AJM, Akkermans ADL, Amaral AL, Pons M-N, Ferreira EC, Mota M, Alves MM (2003) Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from an EGSB reactor fed with oleic acid. Water Sci Technol 47(5):181–188

    CAS  Google Scholar 

  • Perez YG, Leite SGF, Coelho MAZ (2006) Activated sludge morphology characterization through an image analysis procedure. Braz J Chem Eng 23:319–330

    Article  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  Google Scholar 

  • Pons M-N, Vivier H (1999) Biomass quantification by image analysis. Adv Biochem Eng Biotechnol 66:133–184

    Google Scholar 

  • Rossetti S, Christensson C, Blackall LL, Tandoi V (1997) Phentypic and phylogenetic description of an Italian isolate of “Microthrix parvicella”. J Appl Microbiol 82:405–410

    Article  CAS  Google Scholar 

  • Rossetti S, Tomei MC, Nielson PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64

    Article  CAS  Google Scholar 

  • Russ CR (1995) The image processing handbook. CRC Press, Boca Raton, FL

  • Salvadó H, Palomo A, Mas M, Puigagut J, Gracia MP (2004) Dynamics of nematodes in a high organic loading rotating biological contactors. Water Res 38:2571–2578

    Article  CAS  Google Scholar 

  • Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Process Biochem 42:119–133

    Article  CAS  Google Scholar 

  • Schmid M, Thill A, Purkhold U, Walcher M, Bottero JY, Ginestet P, Nielsen PH, Wuertz S, Wagner M (2003) Characterization of activated sludge flocs by confocal laser scanning microscopy and image analysis. Water Res 37:2043–2052

    Article  CAS  Google Scholar 

  • Schuppler M, Wagner M, Schön G, Göbel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144:249–259.

    Google Scholar 

  • Serafim LS, Lemos PC, Levantesi C, Tandoi V, Santos H, Reis MAM (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Meth 51:1–18

    Article  CAS  Google Scholar 

  • Sezgin M, Jenkins D, Parker DS (1978) A unified theory of filamentous activated sludge bulking. J Water Pollut Control Fed 50:362–381

    CAS  Google Scholar 

  • Seviour EM, Eales K, Izzard L, Beer M, Carr EL, Seviour RJ (2006) The in situ physiology of “Nostocoida limicola” II, a filamentous bacterial morphotype in bulking activated sludge, using fluorescence in situ hybridization and microautoradiography. Water Sci Technol 54:47–53

    CAS  Google Scholar 

  • Schuppler M, Wagner M, Schön G, Göbel UB (1998b) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144:249–259

    Article  CAS  Google Scholar 

  • Schmidt H, Eickhorst T, Tippkötter R (2012) Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. J Microbiol Meth 91:399–405

    Article  CAS  Google Scholar 

  • Singh KS, Viraraghavan T (1998) Start-up and operation of UASB reactors at 20°C for municipal wastewater treatment. J Ferment Bioeng 85:609–614

    Article  CAS  Google Scholar 

  • Singh KS, Viraraghavan T (2003) Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Sci Technol 48(6):211–217

    CAS  Google Scholar 

  • Smets IY, Banadda EN, Deurinck J, Renders N, Jenné R, Van Impe JF (2006) Dynamic modeling of filamentous bulking in lab-scale activated sludge processes. J Process Control 16:313–319

    Article  CAS  Google Scholar 

  • Strathmann M, Wingender J, Flemming H-C (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Meth 50:237–248

    Article  CAS  Google Scholar 

  • Su KZ, Yu HQ (2005) Formation and characterization of aerobic granules in a sequenting batch reactor treating soybean-processing wastewater. Environ Sci Technol 39:2818–2827

    Article  CAS  Google Scholar 

  • Tian Y, Chen L, Zhang S, Cao C, Zhang S (2011) Correlating membrane fouling with sludge characteristics in membrane bioreactors: An especial interest in EPS and sludge morphology analysis. Bioresour Technol 102:8820–8827

    Article  CAS  Google Scholar 

  • Van den Broeck R, Krzeminski P, Van Dierdonck J, Gins G, Lousada-Ferreira M, Van Impe JFM, van der Graaf JHJM, Smets IY, van Lier JB (2011) Activated sludge characteristics affecting sludge filterability in municipal and industrial MBRs: Unraveling correlations using multi-component regression analysis. J Membr Sci 378:330–338

    Article  CAS  Google Scholar 

  • Van lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Hulshoff Pol LW, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43:1–18

    Google Scholar 

  • Wagner M, Amann R, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N, Schleifer K-H (1994) Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417

    Article  Google Scholar 

  • Wagner M, Rath G, Koops HP, Flood J, Amann R (1996) In situ analysis of nitrifying bacteria in sewage treatment. Water Sci Technol 34:237–244

    CAS  Google Scholar 

  • Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Anton Leeuw 81:665–680

    Article  CAS  Google Scholar 

  • Wilén B-M, Jin B, Lant P (2003) Impacts of structural characteristics on activated sludge floc stability. Water Res 37:3632–3645

    Article  CAS  Google Scholar 

  • Williams ND, Walling DE, Leeks GJL (2007) High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediments. Water Res 41:1081–1093

    Article  CAS  Google Scholar 

  • Yang Z, Peng XF, Lee DJ, Chen MY (2009) An image-based method for obtaining pore-size distribution of porous media. Environ Sci Technol 43:3248–3253

    Article  CAS  Google Scholar 

  • Yu R-F, Cheng W-P, Chu M-L (2005) On-line monitoring of wastewater true color using digital image analysis and artificial neural network. J Environ Eng 131:71–79

    Article  CAS  Google Scholar 

  • Yu R-F, Chen H-W, Cheng W-P, Chu M-L (2009) Simultaneously monitoring the particle size distribution, morphology and suspended solids concentration in wastewater applying digital image analysis (DIA). Environ Monit Assess 148:19–26

    Article  CAS  Google Scholar 

  • Zhou Z, Pons M-N, Raskin L, Zilles JL (2007) Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples. Appl Environ Microbiol 73:2956–2962

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support to the project PTDC/EBB-EBI/103147/2008 and the grant SFRH/BPD/48962/2008 provided by Fundação para a Ciência e Tecnologia (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. C. Ferreira.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, J.C., Mesquita, D.P., Amaral, A.L. et al. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. Environ Sci Pollut Res 20, 5887–5912 (2013). https://doi.org/10.1007/s11356-013-1824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1824-5

Keywords

Navigation