Skip to main content

Advertisement

Log in

PAH air pollution at a Portuguese urban area: carcinogenic risks and sources identification

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng m−3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10−6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98 × 10−7 in PM10 and 1.06 × 10−6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  • Albinet A, Leoz-Garziandia E, Budzinski H, Viilenave E (2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ 384:280–292

    Article  CAS  Google Scholar 

  • Andrade S, Cristale J, Silva FS, Zocolo GJ, Marchi MRR (2010) Contribution of sugar-cane harvesting season to atmospheric contamination by polycyclic aromatic hydrocarbons (PAHs) in Araraquara city, Southeast Brazil. Atmos Environ 44:2913–2919

    Article  Google Scholar 

  • Andreou G, Rapsomanikis S (2009) Polycyclic aromatic hydrocarbons and their oxygenated derivatives in the urban atmosphere of Athens. J Hazard Mater 172:363–373

    Article  CAS  Google Scholar 

  • Bernalte E, Sánchez CM, Gil EP, Balic FC, Cortez VV (2012) An exploratory study of particulate PAHs in low-polluted urban and rural areas of southwest Spain: concentrations, source assignment, seasonal variation and correlations with other air pollutants. Water Air Soil Pollut 223:5143–5154

    Article  CAS  Google Scholar 

  • Boström CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessments, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488

    Article  Google Scholar 

  • Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, Armstrong B, Hughes E, Jerrett M, van den Brandt P (2009) Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res Rep Health Eff Inst 139:5–71, discussion 73–89

    Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242

    Article  CAS  Google Scholar 

  • Callén MS, de la Cruz MT, López JM, Murillo R, Navarro MV, Mastral AM (2008) Some inferences on the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbons (PAH) at Zaragoza (Spain). Chemosphere 73:1357–1365

    Article  Google Scholar 

  • Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738

    Article  CAS  Google Scholar 

  • Castellano AV, Cancio JL, Alemán SP, Rodrıguez S (2003) Polycyclic aromatic hydrocarbons in ambient air particles in the city of Las Palmas de Gran Canaria. Environmen Int 29:475–480

    Article  Google Scholar 

  • Castro D, Slezakova K, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2011) Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: levels, phase distributions, and health risks. Atmos Environ 45:1799–1808

    Article  CAS  Google Scholar 

  • Castro D, Slezakova K, Oliva-Teles MT, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2009) Analysis of polycyclic aromatic hydrocarbons in atmospheric particulate samples by microwave-assisted extraction and liquid chromatography. J Sep Sci 32:501–510

    Article  CAS  Google Scholar 

  • Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Environ 37:649–660

    Article  CAS  Google Scholar 

  • Chou C, Lee C-T, Chen W-N, Chang S-Y, Chen T-K, Lin C-Y, Chen J-P (2007) Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan. Sci Total Environ 374:156–166

    Article  CAS  Google Scholar 

  • Cooper DA (2003) Exhaust emissions from ships at berth. Atmos Environ 37:3817–3830

    Article  CAS  Google Scholar 

  • Delgado-Saborit JM, Stark C, Harrison RM (2011) Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ Int 37:383–392

    Article  CAS  Google Scholar 

  • Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (2004) Official Journal of the European Union L23:3–16.

  • Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe (2008) Official Journal of the European Union L151: 1-44.

  • Fang GC, Wu YS, Chen JC, Chang CN, Ho TT (2006) Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004–2005. Sci Total Environ 366:729–738

    Article  CAS  Google Scholar 

  • Fernández P, Grimalt JO, Vilanova RM (2002) Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environ Sci Technol 36:1162–1168

    Article  Google Scholar 

  • Froehner S, Maceno M, Scurupa Machado K, Grube M (2011) Health risk assessment of inhabitants exposed to PAHs particulate matter in air. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng 46:817–823

    Article  CAS  Google Scholar 

  • Gaga EO, Ari A (2011) Gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in an urban traffic site in Eskisehir, Turkey. Atmos Res 99:207–216

    Article  CAS  Google Scholar 

  • Gaga EO, Döğeroğlu T, Ozden O, Ari A, Yay OD, Altuğ H, Akyol N, Ornektekin S, Van Doorn W (2012) Evaluation of air quality by passive and active sampling in an urban city in Turkey: current status and spatial analysis of air pollution exposure. Environ Sci Pollut Res Int 19:3579–3596

    Article  CAS  Google Scholar 

  • Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    Article  CAS  Google Scholar 

  • Gomez MLS, Martin MCR (1987) Application of cluster analysis to identify sources of airborne particles. Atmos Environ 21:1521–1527

    Article  Google Scholar 

  • Guo H, Lee SC, Ho KF, Wang XM, Zou SC (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37:5307–5317

    Article  CAS  Google Scholar 

  • Hassan SK, Khoder MI (2012) Gas-particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environ Monit Assess 184:3593–3612

    Article  CAS  Google Scholar 

  • Haugen J-E, Wania F, Lei YD (1999) Polychlorinated biphenyls in the atmosphere of southern Norway. Environ Sci Technol 33:2340–2345

    Article  CAS  Google Scholar 

  • Ho KF, Lee SC, Chiu GMY (2002) Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmos Environ 36:57–65

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum 82:1–556

    Google Scholar 

  • International Agency for Research on Cancer (IARC) (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1–853

    Google Scholar 

  • Jia C, Batterman S (2010) A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. Int J Environl Res Public Health 7:2903–2939

    Article  CAS  Google Scholar 

  • Kalaitzoglou M, Terzi E, Samara C (2004) Patterns and sources of particle-phase aliphatic and polycyclic aromatic hydrocarbons in urban and rural sites of western Greece. Atmos Environ 38:2545–2560

    Article  CAS  Google Scholar 

  • Kamens RM, Guo Z, Fulcher JN, Bell D (1988) Influence of humidity, sunlight, and temperature on the daytime decay of PAH on atmospheric soot particles. Environ Sci Technol 22:103–108

    Article  CAS  Google Scholar 

  • Lammel G, Klánová J, Ilić P, Kohoutek J, Gasić B, Kovacić I, Lakić N, Radić R (2010) Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales—I. Levels and variabilities. Atmos Environ 44:5015–5021

    Article  CAS  Google Scholar 

  • Lee RGM, Jones KC (1999) The influence of meteorology and air masses on daily atmospheric PCB and PAH concentrations at a UK location. Environ Sci Technol 33:705–712

    Article  CAS  Google Scholar 

  • Lin L, Fan Z-H, Zhu X, Huang L-H, Bonanno LJ (2011) Characterization of atmospheric polycyclic aromatic hydrocarbons in a mixed-use urban community in Paterson, NJ: concentrations and sources. J Air Waste Manage Assoc 61:631–639

    Article  CAS  Google Scholar 

  • Liu M, Cheng SB, Ou DN, Hou LJ, Gao L, Wang LL, Xie YS, Yang Y, Xu SY (2007) Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmos Environ 41:8785–8795

    Article  CAS  Google Scholar 

  • Lu H, Zhu L, Chen S (2008) Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environ Pollut 152:569–575

    Article  CAS  Google Scholar 

  • Ma W, Qi H, Li Y, Liu L, Sun D, Wang D, Zhang Z, Tian C, Shen J (2011) Seasonal and spatial variations of air concentrations of polycyclic aromatic hydrocarbons in northeastern Chinese urban region. Bull Environ Contam Toxicol 86:43–49

    Article  CAS  Google Scholar 

  • Manly BFJ (1994) Multivariate statistical methods—a primer. Chapman and Hall, London

    Google Scholar 

  • McKenna JE (2003) An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Modell Softw 18:205–220

    Article  Google Scholar 

  • Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry. Pearson Education, Harlow

    Google Scholar 

  • Mohanraj R, Solaraj G, Dhanakumar S (2011) Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ Sci Pollut Res 18:764–771

    Article  CAS  Google Scholar 

  • National Institute of Statistics (2009) Statistical yearbook of Portugal 2008. National Institute of Statistics, Lisbon

    Google Scholar 

  • Netto ADP, Barreto RP, Moreira JC, Arbilla G (2007) Spatial distribution of polycyclic aromatic hydrocarbons in Terminalia catappa L. (Combretaceae) bark from a selected heavy road traffic area of Rio de Janeiro City, Brazil. J Hazard Mater 142:389–396

    Article  Google Scholar 

  • Obiri S, Cobbina SJ, Armah FA, Naangmenyele Z (2011) Quantification and characterization of vehicle-based polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tamale metropolis, Ghana. Environ Sci Pollut Res 18:1166–1173

    Article  CAS  Google Scholar 

  • Okona-Mensah KW, Battershill J, Boobis A, Fielder R (2005) An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food Chem Toxicol 43:1103–1116

    Article  CAS  Google Scholar 

  • Omar NYMJ, Abas MRB, Ketuly KA, Tahir NM (2002) Concentrations of PAHs in atmospheric particles (PM10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos Environ 36:247–254

    Article  CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  CAS  Google Scholar 

  • Pereira MC, Alvim-Ferraz MCM, Santos RC (2005) Relevant aspects of air quality in Oporto Portugal: PM10 and O3. Environ Monit Assess 101:203–221

    CAS  Google Scholar 

  • Pereira MC, Santos RC, Alvim-Ferraz MCM (2007) Air quality improvements using European environment policies: a case study of SO2 in a coastal region in Portugal. J Toxicol Env Health Part A 70:1–5

    Article  Google Scholar 

  • Pires JCM, Martins FG, Sousa SIV, Alvim-Ferraz MCM, Pereira MC (2008a) Selection and validation of parameters in multiple linear and principal component regressions. Environ Modell Softw 23:50–55

    Article  Google Scholar 

  • Pires JCM, Sousa SIV, Pereira MC, Alvim-Ferraz MCM, Martins FG (2008b) Management of air quality monitoring using principal component and cluster analysis—part I: SO2 and PM10. Atmos Environ 42:1249–1260

    Article  CAS  Google Scholar 

  • Pires JCM, Sousa SIV, Pereira MC, Alvim-Ferraz MCM, Martins FG (2008c) Management of air quality monitoring using principal component and cluster analysis—part II: CO, NO2 and O3. Atmos Environ 42:1261–1274

    Article  CAS  Google Scholar 

  • Pires JCM, Martins FG, Sousa SIV, Alvim-Ferraz MCM, Pereira MC (2008d) Prediction of the daily mean PM10 concentrations using linear models. Am J Environ Sci 4:445–453

    Article  CAS  Google Scholar 

  • Portuguese Automobile Association (2010) Statistics of automobile sector 2010. Automobile Association of Portugal, Lisbon. Available at http://www.imtt.pt/sites/IMTT/Portugues/CentroDocumentacao/RepertorioGeral/Estatisticas/Sectorautomovel/Documents/Estatisticas_Sector_Automovel_ACAP_2010.pd.

  • Pufulete M, Battershill J, Boobis A, Fielder R (2004) Approaches to carcinogenic risk assessment for polycyclic aromatic hydrocarbon: a UK perspective. Regul Toxicol Pharm 40:54–56

    Article  CAS  Google Scholar 

  • Rajput N, Lakhani A (2009) Polycyclic aromatic hydrocarbons: sources, distribution, and health implications. In: Gurjar BR, Molina LT, Ojha CSP (eds) Air pollution: health and environmental impacts, 1st edn. CRC, Boca Raton, pp 229–248

    Google Scholar 

  • Ramírez N, Cuadras A, Rovira E, Marcé RM, Borrull F (2011) Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ Health Perspect 119:1110–1116

    Article  Google Scholar 

  • Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E, Bleux N, Bergmans P, Van Grieken R (2006) Seasonal and site specific variation in vapor and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricke A, Rogge WF (2006) Source apportionment of molecular markers and organic aerosol—1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environ Sci Technol 40:7803–7810

    Article  CAS  Google Scholar 

  • Schauer C, Niessner R, Pöschl U (2003) Polycyclic aromatic hydrocarbons in urban air particulate matter: decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ Sci Technol 37:2861–2868

    Article  CAS  Google Scholar 

  • Shibamoto T (1998) Chromatographic analysis of environmental and food toxicants. Dekker, New York

    Google Scholar 

  • Silva FS, Cristale J, André PA, Saldiva PHN, Marchi MRR (2010) PM2.5 and PM10: the influence of sugarcane burning on potential cancer risk. Atmos Environ 44:5133–5138

    Article  CAS  Google Scholar 

  • Slezakova K, Castro D, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2012) Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmos Res doi:10.1016/j.atmosres.2012.06.009

  • Slezakova K, Castro D, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2011) Air pollution from traffic emissions in Oporto, Portugal: health and environmental implications. Microchem J 99:51–59

    Article  CAS  Google Scholar 

  • Slezakova K, Castro D, Pereira MC, Morais S, Delerue-Matos C, Alvim-Ferraz MCM (2010) Influence of traffic emissions on the carcinogenic polycyclic aromatic hydrocarbons in outdoor breathable particles. J Air Waste Manage Assoc 60:393–401

    Article  CAS  Google Scholar 

  • Slezakova K, Pereira MC, Pires JCM, Martins FG, Alvim-Ferraz MCM (2008) Influence of traffic emissions on composition of atmospheric particles of different sizes—part 2: SEM-EDS characterization. J Atmos Chem 60:221–236

    Article  CAS  Google Scholar 

  • Tham YWF, Takeda K, Sakugawa H (2008a) Exploring the correlation of particulate PAHs, sulfur dioxide, nitrogen dioxide and ozone, a preliminary study. Water Air Soil Pollut 194:5–12

    Article  CAS  Google Scholar 

  • Tham YWF, Takeda K, Sakugawa H (2008b) Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: influence of meteorological conditions and seasonal variations. Atmos Res 88:224–233

    Article  CAS  Google Scholar 

  • Tsapakis M, Stephanou EG (2003) Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos Environ 37:4935–4944

    Article  CAS  Google Scholar 

  • Tsapakis M, Stephanou EG (2005) Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147–156

    Article  CAS  Google Scholar 

  • Tsapakis M, Stephanou EG (2007) Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere. Environ Sci Technol 41:8011–8017

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1986) Guidelines for carcinogen risk assessment. Federal Register, 51, 185. US Government Printing Office, Washington, DC. <http://www.epa.gov/ncea/raf/car2sab/guidelines_1986.pdf>

  • United States Environmental Protection Agency (USEPA) (1989) Risk assessment guidance for superfund, vol I: human health evaluation manual. EPA/540/1-89/002, Office of Emergency and Remedial Response, Washington, DC

  • United States Environmental Protection Agency (USEPA) (2008) Child-specific exposure factors handbook (final report) 2008. EPA/600/R-06/096F, National Centre for Environmental Assessment Office of Research and Development, Washington, DC

  • United States Environmental Protection Agency (USEPA) (2012) Risk-based concentration table. Accessed 5.6.2012, Available from: <http://www.epa.gov/reg3hwmd/risk/human/index.htm>

  • Vardar N, Esen F, Tasdemir Y (2008) Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environ Pollut 155:298–307

    Article  CAS  Google Scholar 

  • Vieira C, Morais S, Ramos S, Delerue-Matos C, Oliveira MBPP (2011) Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: intra- and inter-specific variability and human health risks for consumption. Food Chem Toxicol 49:923–932

    Article  CAS  Google Scholar 

  • Wang X, Cheng H, Xu X, Zhuang G, Zhao C (2008) A wintertime study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in Beijing: assessment of energy structure conversion. J Hazard Materi 157:47–56

    Article  CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1998) Environmental health criteria 202: selected non-heterocyclic polycyclic aromatic hydrocarbons. International Program on Chemical Safety. World Health Organization, Geneva,. Available at <http://www.inchem.org/documents/ehc/ehc/ehc202.htm#SectionNumber:1.3>

  • Wu CC, Lin TS, Yang TT, Hsu HW, Chang CL, Huang CH, Lin WY (2012) Seasonal variation and health risk assessment of polycyclic aromatic hydrocarbons in Miaoli city, Taiwan. Bull Environ Contam Toxicol 88:433–437

    Article  CAS  Google Scholar 

  • Yang HH, Lee WJ, Chen SJ, Lai SO (1998) PAH emission from various industrial stacks. J Hazard Mater 60:159–74

    Article  CAS  Google Scholar 

  • Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar A, Scharf S (2006) Pilot study on road traffic emissions (PAHs, heavy metals) measured by using mosses in a tunnel experiment in Vienna, Austria. Environ Sci Pollut Res 13:398–405

    Article  CAS  Google Scholar 

  • Zhang S, Zhang W, Wang K, Shen Y, Hu L, Wang X (2009) Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China. Environ Monit Assess 151:197–207

    Article  CAS  Google Scholar 

  • Zhao J, Zhang F, Xu L, Chen J, Xu Y (2011) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Xiamen, China. Sci Total Environ 409:5318–5327

    Article  CAS  Google Scholar 

  • Zheng M, Fang M (2000) Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. Water, Air Pollut 117:175–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para Ciência e Tecnologia through grant numbers PEst-C/EQB/LA0006/2011 and PEst-C/EQB/UI0511/2011. Klara Slezakova and José Pires are grateful to FCT for their fellowships SFRH/BPD/65722/2009 and SFRH/BPD/66721/2009, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Pereira.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOC 28 kb)

ESM Table 2

(DOC 61 kb)

ESM Table 3

(DOC 53 kb)

ESM Fig. 1

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slezakova, K., Pires, J.C.M., Castro, D. et al. PAH air pollution at a Portuguese urban area: carcinogenic risks and sources identification. Environ Sci Pollut Res 20, 3932–3945 (2013). https://doi.org/10.1007/s11356-012-1300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1300-7

Keywords

Navigation