Skip to main content
Log in

Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, R., & Arey, J. (1994). Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environmental Health Perspectives, 102, 117–126.

    CAS  Google Scholar 

  • Bahm, K., & Khalil, M. A. K. (2004). A new model of tropospheric hydroxyl radical concentrations. Chemosphere, 54, 143–166.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment. Estuarine, Coastal and Shelf Science, 47, 77–90.

    Article  CAS  Google Scholar 

  • Berko, HN (1999) Polycyclic aromatic hydrocarbons (PAHs) in Australia—technical report no. 2. Environment Australia, Department of Environmental Protection, Perth, Western Australia, October 1999.

  • Bidleman, T. F. (1988). Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapor–particle partitioning. Environmental Science and Technology, 22, 361–367.

    Article  CAS  Google Scholar 

  • Binet, S., Pfohl-Leszkowicz, A., Brandt, H., Lafontaine, M., & Castegnaro, M. (2002). Bitumen fumes: review of work on the potential risk to workers and the present knowledge on its origin. The Science of the Total Environment, 300, 37–49.

    Article  CAS  Google Scholar 

  • Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., & Takada, H. (2007). Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. The Science of the Total Environment, 384, 420–432.

    Article  CAS  Google Scholar 

  • Bourotte, C., Forti, M. C., Taniguchi, S., Caruso, M., & Lotufo, P. A. (2005). A wintertime study of PAHs in fine and coarse aerosols in Sao Paulo City, Brazil. Atmospheric Environment, 39, 3799–3811.

    Article  CAS  Google Scholar 

  • Caricchia, A. M., Chiavarini, S., & Pessa, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33, 3731–3738.

    Article  CAS  Google Scholar 

  • Choi, M. P. K., Kang, Y. H., Peng, X. L., Ng, K. W., & Wong, M. H. (2009). Stockholm Convention organochlorine pesticides and polycyclic aromatic hydrocarbons in Hong Kong air. Chemosphere, 77, 714–719.

    Article  CAS  Google Scholar 

  • Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68, 472–478.

    Article  CAS  Google Scholar 

  • Cindoruk, S. S., & Tasdemir, Y. (2007). Characterization of gas/particle concentrations and partitioning of polychlorinated biphenyls (PCBs) measured in an urban site of Turkey. Environmental Pollution, 148, 325–333.

    Article  Google Scholar 

  • Department for Environment, Food and Rural Affairs in partnership with the Scottish Executive, Welsh Assembly Government and Department of the Environment Northern Ireland (2007) The UK air quality strategy for England, Scotland, Wales, and Northern Ireland involves a UK national air quality objective, reiterated in 2007. Available from: http://www.defra.gov.uk

  • Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34, 4635–4640.

    Article  CAS  Google Scholar 

  • Ding, X., Wang, X. M., Xie, Z. Q., Xiang, C. H., Mai, B. X., Sun, L. G., et al. (2007). Atmospheric polycyclic aromatic hydrocarbons observed over the North Pacific Ocean and the Arctic area: spatial distribution and source identification. Atmospheric Environment, 47, 2061–2072.

    Article  Google Scholar 

  • Dyke, P. H., Foan, C., & Fiedler, H. (2003). PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere, 50, 469–480.

    Article  CAS  Google Scholar 

  • Esen, F., Tasdemir, Y., & Vardar, N. (2008). Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmospheric Research, 88, 243–255.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, C. N., Wu, Y. S., Fu, P. C., Yang, I. L., & Chen, M. H. (2004). Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. The Science of the Total Environment, 327, 135–146.

    Article  CAS  Google Scholar 

  • Fang, G. C., Wu, Y. S., Chen, M. H., Ho, T. T., Huang, S. H., & Rau, J. Y. (2004). Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmospheric Environment, 38, 3385–3391.

    Article  CAS  Google Scholar 

  • Fang, G.-C., Wu, Y.-S., Fu, P. P.-C., Yang, I.-L., & Chen, M.-H. (2004). Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere, 54, 443–452.

    Article  CAS  Google Scholar 

  • Fon, T. Y. W., Noriatsu, O., & Hiroshi, S. (2007). Polycyclic aromatic hydrocarbons (PAHs) in the aerosol of Higashi Hiroshima, Japan: Pollution scenario and source identification. Water, Air, and Soil Pollution, 182, 235–243.

    Article  CAS  Google Scholar 

  • Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37, 5307–5317.

    Google Scholar 

  • Halsall, C. J., Coleman, P. J., Davis, B. J., Burnett, V., Waterhouse, K. S., Hardingjones, P., et al. (1994). Polycyclic aromatic hydrocarbons in UK urban air. Environmental Science and Technology, 28(13), 2380–2386.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30, 825–832.

    Article  CAS  Google Scholar 

  • Hassan, SK (2006) Atmospheric polycyclic aromatic hydrocarbons and some heavy metals in suspended particulate matter in urban, industrial and residential areas in Greater Cairo. Ph.D. Thesis, Cairo University, Egypt.

  • Hassanien, M. A., & Abdel-Latif, N. M. (2008). Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. Journal of Hazardous Materials, 151, 247–254.

    Article  CAS  Google Scholar 

  • Hemminki, K., & Pershagen, G. (1994). Cancer risk of air pollution epidemiological evidence. Environmental Health Perspectives, 102(Suppl. 4), 187–192.

    Google Scholar 

  • Kakimoto, H., Matsumoto, Y., Sakai, S., Kanoh, F., Arashidani, K., & Tang, N. (2002). Comparison of atmospheric polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in an industrialized city (Kitakyushu) and two commercial cities (Sapporo and Tokyo). Journal of Health Sciences, 48, 370–375.

    Article  CAS  Google Scholar 

  • Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., & Masunaga, S. (2005). Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to human respiratory tract. The Science of the Total Environment, 340, 71–80.

    Article  CAS  Google Scholar 

  • Kennedy, K., Macova, M., Bartkow, M. E., Hawker, D. W., Zhao, B., Denison, M. S., et al. (2010). Effect based monitoring of seasonal ambient air exposures in Australia sampled by PUF passive air samplers. Atmospheric Pollution Research, 1, 50–58.

    Article  CAS  Google Scholar 

  • Khalili, N. R., (1992). Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA.

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533–542.

    Article  CAS  Google Scholar 

  • Khoder, M. I. (2006). Sources and distribution of polycyclic aromatic hydrocarbons in wet deposition in urban and suburban areas of Giza, Egypt. Central European Journal of Occupational and Environmental Medicine, 12, 279–296.

    Google Scholar 

  • Khoder, M. I. (2007). Profile and source identification of polycyclic aromatic hydrocarbons in dust deposited on leaves of street trees as indicator of the sources of air pollution in urban areas in Cairo. Central European Journal of Occupational and Environmental Medicine, 13(1), 71–90.

    Google Scholar 

  • Khoder, M. I. (2009). Diurnal, seasonal and weekdays-weekends variations of ground level ozone concentrations in an urban area in Greater Cairo. Environmental Monitoring and Assessment, 149, 349–362.

    Article  CAS  Google Scholar 

  • Kim, E. J., Oh, J. E., & Chang, Y. S. (2003). Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. The Science of the Total Environment, 311, 177–189.

    Article  CAS  Google Scholar 

  • Kishida, M., Imamura, K., Takenaka, N., Maeda, Y., Viet, P. H., & Bandow, H. (2008). Concentrations of atmospheric polycyclic aromatic hydrocarbons in particulate matter and the gaseous phase at roadside sites in Hanoi, Vietnam. Bulletin of Environmental Contamination and Toxicology, 81, 174–179.

    Article  CAS  Google Scholar 

  • Kiss, G., Varga-Punchony, Z., Rohrbacher, G., & Hlavay, J. (1998). Distribution of polycyclic aromatic hydrocarbons on atmospheric aerosol particles of different sizes. Atmospheric Research, 46, 253–261.

    Article  CAS  Google Scholar 

  • Knoll, J. E. (1985). Estimation of the limit of detection in chromatography. Journal of Chromatographic Science, 23, 422–425.

    CAS  Google Scholar 

  • LBS. (1995). The determination of polycyclic aromatic hydrocarbons in ambient Air by GC/MS, Laboratory Services Branch, PAHAIR/APSD-E3124B. Etobicoke, Ontario: Ontario Ministry of Environment and Energy.

    Google Scholar 

  • Li, Z., Porter, E. N., Sjödin, A., Needham, L. L., Lee, S., Russell, A. G., et al. (2009). Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta—seasonal variations at urban, suburban, and rural ambient air monitoring sites. Atmospheric Environment, 43, 4187–4193.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. The Science of the Total Environment, 355, 145–155.

    Article  CAS  Google Scholar 

  • Lima, A. L. C., Farrington, J. W., & Reddy, C. M. (2004). Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environmental Forensics, 6(2), 109–131.

    Article  Google Scholar 

  • Lin, T. C., Chang, F. H., Hsieh, J. H., Chao, H. R., & Chao, M. R. (2002). Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Journal of Hazardous Materials, 95, 1–12.

    Article  CAS  Google Scholar 

  • Liu, S., Tao, S., Liu, W., Dou, H., Liu, Y., Zhao, J., et al. (2008). Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain. Environmental Pollution, 156, 651–656.

    Article  CAS  Google Scholar 

  • Lohmann, R., Northcott, G. L., & Jones, K. C. (2000). Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the UK atmosphere. Environmental Science and Technology, 34, 2892–2899.

    Article  CAS  Google Scholar 

  • Masclet, P., Mouvier, G., & Nikolaou, K. (1986). Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmospheric Environment, 20, 439–446.

    Article  CAS  Google Scholar 

  • Mazzera, D. T. T., Hayes, T., Lowenthal, D., & Zielinska, B. (1999). Quantitation of polycyclic aromatic hydrocarbons in soil at McMurdo station, Antarctica. The Science of the Total Environment, 229, 65–71.

    Article  CAS  Google Scholar 

  • Menichini, E., Monfredini, F., & Merli, F. (1999). The temporal variability of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban traffic area in Roma, 1993–1998. Atmospheric Environment, 33, 3739–3750.

    Article  CAS  Google Scholar 

  • Miguel, A. H., Kirchstetter, T. W., Harley, R. A., & Hering, S. (1998). On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science and Technology, 32, 450–455.

    Article  CAS  Google Scholar 

  • Nielsen, T., Jorgensen, H. E., Larsen, J. C., & Poulsen, M. (1996). City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. The Science of the Total Environment, 189, 41–49.

    Article  Google Scholar 

  • Nisbet, C., & La Goy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., & Holsn, T. M. (1999). Polycyclic aromatic hydrocarbons (PAHs) in Chicago air. The Science of the Total Environment, 27, 57–67.

    Google Scholar 

  • Ohura, T., Amagai, T., Fusaya, M., & Matsushita, H. (2004). Spatial distributions and profiles of atmospheric polycyclic aromatic hydrocarbons in two industrial cities in Japan. Environmental Science and Technology, 38, 49–55.

    Article  CAS  Google Scholar 

  • Pankow, J. F. (1994). An absorption model of gas particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 28, 185–188.

    Article  CAS  Google Scholar 

  • Park, J. S., Wade, T. L., & Sweet, S. (2001). Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmospheric Environment, 35, 3241–3249.

    Article  CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917–2924.

  • Peng, L., Zeng, F. G., & Chen, M. (2003). Distribution characteristics and source analysis of n-alkanes (C14-C31) and PAHs in total suspended particulates in urban area of Taiyuan city. Rock and Mineral Analysis, 22, 206–210.

    CAS  Google Scholar 

  • Petry, T., Schmid, P., & Schlatter, Ch. (1996). The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere, 32, 639–648.

    Article  CAS  Google Scholar 

  • Poor, N., Tremblay, R., Kay, H., Bhethanabotla, V., Swartz, E., Luther, M., et al. (2004). Atmospheric concentrations and dry deposition rates of polycyclic aromatic hydrocarbons (PAHs) for Tampa Bay, Florida, USA. Atmospheric Environment, 38, 6005–6015.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol: 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science and Technology, 27, 1892–1904.

    Article  CAS  Google Scholar 

  • Sharma, H., Jain, V. K., & Khan, Z. H. (2007). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere, 66, 302–310.

    Article  CAS  Google Scholar 

  • Sin, D. W. M., Wong, Y. C., Choi, Y. Y., Lam, C. H., & Louie, P. K. K. (2003). Distribution of polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. Journal of Environmental Monitoring, 5, 989–996.

    Article  CAS  Google Scholar 

  • Sonnefeld, W. J., Zoller, W. H., & May, W. E. (1983). Dynamic coupled column liquid chromatographic determination of ambient temperature vapor pressures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 55, 275–280.

    Article  CAS  Google Scholar 

  • Tasdemir, Y., & Esen, F. (2007). Urban air PAHs: concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey. Atmospheric Research, 84, 1–12.

    Article  CAS  Google Scholar 

  • Terzi, E., & Samara, C. (2004). Gas–particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece. Environmental Science and Technology, 38, 4973–4978.

    Article  CAS  Google Scholar 

  • Tsapakis, M., & Stephanou, E. G. (2005). Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environmental Pollution, 133, 147–156.

    Article  CAS  Google Scholar 

  • Vardar, N., Esen, F., & Tasdemir, Y. (2008). Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environmental Pollution, 155, 298–307.

    Article  CAS  Google Scholar 

  • Wang, X. L., Tao, S., Dawson, R. W., & Xu, F. L. (2002). Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area. Environmental Research, 90, 201–206.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1987). Polynuclear aromatic hydrocarbons (PAH). Air Quality Guidelines for Europe. WHO Regional Publications, European Series No.23. WHO, Geneva, pp. 105–117.

  • Xue, W. L., & Warshawsky, D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicology and Applied Pharmacology, 206, 73–93.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser river basin: a critical appraisal of PAH ratios as indicators of PAH sources and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zielinska, B., Sagebiel, J., Arnott, W. P., Rogers, C. F., Kelly, K. E., Wagner, D. A., et al. (2004). Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science and Technology, 38, 2557–2567.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Kamal Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, S.K., Khoder, M.I. Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environ Monit Assess 184, 3593–3612 (2012). https://doi.org/10.1007/s10661-011-2210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2210-8

Keywords

Navigation