Skip to main content
Log in

Coupling Self-Adaptive Meshing-Based Regularization and Global Image Correlation for Spatially Heterogeneous Deformation Characterization

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Image-based global correlation involves a class of ill-posed inverse problems associated with speckle quality and deformation gradients on specimen surfaces. However, the method used to simultaneously integrate the prior information related to images and deformations and effectively regularize these inverse problems still faces severe challenges, especially when complex heterogeneous deformation gradients exist over sample surfaces with locally degraded speckle patterns.

Objective

We propose a novel self-adaptive meshing-based regularization for global image correlation to determine spatially complex heterogeneous deformations.

Methods

A virtual truss system with a linearly elastic constitutive relationship is employed to self-adaptively implement surface meshing by numerically balancing the exerted virtual forces under the constraints of the local speckle image quality and deformation gradients. The 2-norm-based condition number of the local stiffness matrix is introduced to ensure numerical stability during meshing.

Results

The algorithms can behave as a smart regularization procedure integrating all the prior information during numerical calculations, consequently achieving an accurate, precise and robust characterization of heterogeneous deformations, as demonstrated by virtual simulations and actual experiments.

Conclusions

The regularization strategy coupled to image-based correlation is also promising for automatic quantification of complex heterogeneous deformations, particularly from images with locally degraded speckle patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({e}_{ZNSSD}\) :

ZNSSD-based error function

\({\Omega }_{t}\) :

A specific finite element

\(\Omega\) :

Region of interest (ROI)

p :

Global nodal displacement vector

N:

Total number of nodes

f(X,Y) :

Pixel gray in the reference image

g(x,y):

Pixel gray in the target image

f m :

Mean pixel gray in a specific element in the reference image

g m :

Mean pixel gray in a specific element in the target image

M:

Number of pixels in a specific element

\(\Delta f\) :

Gray normalized coefficient of reference image

\(\Delta g\) :

Gray normalized coefficient of target image

\((X,Y)\) :

An arbitrary point in the reference image

\((x,y)\) :

An arbitrary point in the target image

u:

X-direction displacement component

v:

Y-direction displacement component

t:

Element number

Te :

Total number of elements

q :

Total number of nodes on the specific element

(uit,v it):

ith node displacement in the tth element

φi :

Shape function of the ith node

p t :

The nodal displacement vector of the tth element

H t :

Total assembly matrix

\(Q\lbrack f\left(X,Y\right),W\rbrack\)  :

Weighted gray gradient (WGG) in the vicinity of an arbitrary location (X,Y)

\(W(X,Y,{D}_{o})\) :

Weighted window function

(X c ,Y c ) :

Center of the Gaussian window

\({D}_{o}\) :

Shape control parameter of Gaussian window

\(\overline{Q }\) :

Normalized WGG

\(\underset{f(X,Y)}{\mathrm{max}}Q\) :

Maximum WGG over the ROI

\({\mathbf{F}}_{b}\) :

Force vector acting on a specific bar

\({k}_{b}\) :

Spring constant

\({L}_{0}\) :

Original length in the reference configuration

L :

Length in the current configuration

b :

Unit vector along the bar’s compression direction

F N(a):

Resultant force acting on an arbitrary node

\(a\) :

Node location

\({h}_{b}\) :

Flexibility of bars in the structure

a m :

Node location after the nth iteration

a o :

Initial node location

JN :

Total number of bars on a specified node

F bj :

Force acting on the jth bar on the specified nodes

L 0j :

Length of the jth bar in the reference configuration

L j :

Length of the jth bar in the current configuration

b j :

Unit vector in the jth bar’s compression direction

\(\Lambda\) :

Local strain gradient

\(\overline{\Lambda }\) :

Normalized strain gradient

\({L}_{min}\) :

The lower limit of bar length

\(\psi(X,Y;\overline Q,\overline\Lambda)\)  :

Meshing index

\({\omega }_{Q}\) :

Weighted factor of normalized WGG

\({\omega }_{\Lambda }\) :

Weighted factor of normalized strain gradient

\({L}_{max}\) :

Upper limit of bar length

β :

Ratio of Lmax to Lmin

E :

Green strain tensor

F :

Deformation gradient tensor

I :

Identity tensor in two-dimensional space

C A :

Coefficient matrix

W S :

Strain window size

R :

Residual matrix

k a :

Iterative number of the adaptive algorithm

\({\Omega }_{s}\) :

Local regions with different speckle densities

\(\Gamma\) :

Number of Ωs

\({S}_{\Omega }\) :

Total number of speckle granules in the Ωsth local region

\({I}_{0}\) :

Peak value of gray intensity of a single speckle granule

\({R}_{\mathrm{s}}\) :

Average radius of speckle granule

\(({X}_{S},{Y}_{S})\) :

Central coordinates of the sth speckle granule

\([{U}_{s}{V}_{s}{]}^{T}\) :

Displacement vector of the sth speckle granule

\({\xi }_{g}(X,Y)\) :

Potential white Gaussian noises superimposed on the reference image

\({\eta }_{g}(x,y)\) :

Potential white Gaussian noises superimposed on the target image

\({\alpha }_{X}\) :

Amplitude of simulated sinusoidal displacement field in X direction

\({p}_{X}\) :

Period of simulated sinusoidal displacement field in X direction

\(\Delta\) :

Mean error of the measured displacement

\(\sigma\) :

Standard deviation of the measured displacement

\({(U}_{Sn},{V}_{Sn})\) :

nth node displacement prescribed on the synthetic speckle images

\({(U}_{n},{V}_{n})\) :

Measured displacement vector on the nth node

\(\delta n\) :

Measurement error on the nth node

\(\alpha\) :

Amplitude of the bi-sinusoidal displacement field

\(p\) :

Period of the bi-sinusoidal displacement field

References

  1. van Dijk N, Wu D, Persson C, Isaksson P (2019) A global digital volume correlation algorithm based on higher-order finite elements: Implementation and evaluation. Int J Solids Struct 168:211–227

    Article  Google Scholar 

  2. Chawla K (2019) Composite Materials: Science and Engineering (4th ed). Springer International Publishing

  3. Orteu J (2009) Image Correlation for Shape, Motion and Deformation Measurements. Springer US

  4. Temenoff J, Mikos A (2009) Biomaterials: The Intersection of Biology and Materials Science. Pearson Prentice Hall

  5. Sanchez J, Benaroya H (2014) Review of force reconstruction techniques. J Soun Vib 333:2999–3018

    Article  Google Scholar 

  6. Bai R, Ma Y, Lei Z, Feng Y, Zou J, Liu D (2020) Shear deformation and energy absorption analysis of flexible fabric in yarn pullout test. Compos A Appl Sci Manuf 128:105678

  7. Engqvist J, Wallin M, Ristinmaa M, Hall S (2016) Modelling and experiments of glassy polymers using biaxial loading and digital image correlation. Int J Solids Struct 102–103:100–111

    Article  Google Scholar 

  8. Ye J, Andre S, Farge L (2015) Kinematic study of necking in a semi-crystalline polymer through 3D digital image correlation. Int J Solids Struct 59:58–72

    Article  Google Scholar 

  9. Pan B, Yu L, Wu D (2013) High-Accuracy 2D Digital Image Correlation Measurements with Bilateral Telecentric Lenses: Error Analysis and Experimental Verification. Exp Mech 53(9):1719–1733

    Article  Google Scholar 

  10. Reagan D, Sabato A, Niezrecki C (2018) Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct Health Monit 17(5):1056–1072

    Article  Google Scholar 

  11. Huang J, Qin L, Peng X, Zhu T, Xiong C, Zhang Y, Fang J (2009) Cellular traction force recovery: An optimal filtering approach in two-dimensional Fourier space. J Theor Biol 259(4):811–819

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang J, Wang L, Xiong C, Yuan F (2016) Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 98:103–112

    Article  Google Scholar 

  13. Chai H, Xie Z, Xiao X, Xie H, Huang J, Luo S (2020) Microstructural characterization and constitutive modeling of deformation of closed-cell foams based on in situ x-ray tomography. Int J Plasticity 131:102730

  14. Narayanan A, Dubey K, Davies C, Dear J (2017) The creep of alloy 617 at 700 °C: Material properties, measurement of strain and comparison between finite element analysis and digital image correlation. Int J Solids Struct 129:195–203

    Article  Google Scholar 

  15. Gerbig D, Bower A, Savic V, Herctor L (2016) Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. Int J Solids Struct 97–98:496–509

    Article  Google Scholar 

  16. Wittevrongel L, Lava P, Lomov S, Debruyne D (2015) A Self Adaptive Global Digital Image Correlation Algorithm. Exp Mech 55(2):361–378

    Article  Google Scholar 

  17. Pan B (2018) Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Meas Sci Technol 29(8):082001

  18. Elguedj T, Rethore J, Buteri A (2011) Isogeometric analysis for strain field measurements. Comput Methods Appl Mech Engrg 200(1–4):40–56

    Article  MATH  Google Scholar 

  19. Besnard G, Hild F, Roux S (2006) “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Chatelier Bands. Exp Mech 46(6):789–803

    Article  Google Scholar 

  20. Kleinendorst S, Hoefnagels J, Verhoosel C, Ruybalid A (2015) On the use of adaptive refinement in isogeometric digitalimage correlation. Int J Numer Meth Eng 104(10):944–962

    Article  MATH  Google Scholar 

  21. Lava P, Cooreman S, Debruyne D (2010) Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Opt Lasers Eng 48(4):457–468

    Article  Google Scholar 

  22. Huang J, Zhu T, Pan X, Qin L, Peng X, Xiong C, Fang J (2010) A high-efficiency digital image correlation method based on a fast recursive scheme. Meas Sci Technol 21(3):035101

  23. Yuan Y, Zhan Q, Xiong C, Huang J (2017) Digital image correlation based on a fast convolution strategy. Opt Lasers Eng 97:52–61

    Article  Google Scholar 

  24. Pan B, Bo W, Lubineau G, Moussawi A (2016) Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation. Exp Mech 55(5):887–901

    Article  Google Scholar 

  25. Huang J, Pan X, Peng X, Yuan Y, Xiong C, Fang J, Yuan F (2013) Digital image correlation with self-adaptive Gaussian windows. Exp Mech 53(3):505–512

    Article  Google Scholar 

  26. Yuan Y, Huang J, Peng X, Xiong C, Jing F, Fan Y (2014) Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion. Opt Lasers Eng 52:75–85

    Article  Google Scholar 

  27. Hild F, Roux S (2012) Comparison of Local and Global Approaches to Digital Image Correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  28. Persson P, Strang G (2004) A Simple Mesh Generator in Matlab. SIAM Rev 46(2):329–345

    Article  MathSciNet  MATH  Google Scholar 

  29. Remacle J, Lambrechts J, Seny B, Marchandise E, Johnen A, Geuzainet C (2012) Blossom-Quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int J Numer Meth Eng 89(9):1102–1119

    Article  MathSciNet  MATH  Google Scholar 

  30. Mendoza A, Neggers J, Hild F, Roux S (2019) Complete mechanical regularization applied to digital image and volume correlation. Comput Methods Appl Mech Engrg 355:27–43

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhan Q, Yuan Y, Fan X, Huang J, Xiong C, Yuan F (2016) Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint. Opt Lasers Eng 81:54–62

    Article  Google Scholar 

  32. Yang R (2014) A regularized finite-element digital image correlation for irregular displacement field. Opt Lasers Eng 56:67–73

    Article  Google Scholar 

  33. Press W, Teukolsky S, Vetterling W, Flannery B (2007) Numerical Recipes: The Art of Scientific Computing (3rd ed). Cambridge University Press

  34. Thomas T, Roux S, Morgeneyer T, Hild F (2014) Localized strain field measurement on laminography data with mechanical regularization. Nucl Instrum Meth B 324:70–79

    Article  Google Scholar 

  35. Cofaru C, Philips W, Paepegem W (2010) Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation. Appl Optics 49(33):6472–6484

    Article  Google Scholar 

  36. Kleinendorst S, Hoefnagels J, Geers M (2019) Mechanical Shape Correlation: A novel integrated digital image correlation approach. Comput Methods Appl Mech Engrg 345:983–1006

    Article  MathSciNet  MATH  Google Scholar 

  37. Baldi A, Bertolino F (2016) Assessment of h-refinement procedure for global digital image correlation. Meccanica 51(4):979–991

    Article  MathSciNet  MATH  Google Scholar 

  38. Blaysat B, Neggers J, Grédiac M, Sur F (2020) Towards Criteria Characterizing the Metrological Performance of Full-field Measurement Techniques: Application to the Comparison Between Local and Global Versions of DIC. Exp Mech 60(3):393–407

    Article  Google Scholar 

  39. Fedele R, Galantucci L, Ciani A (2013) Global 2D digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized pyramidal, multi-grid implementation. Int J Numer Meth Eng 96:739–762

    Article  MATH  Google Scholar 

  40. Yuan Y, Zhan Q, Huang J, Fang J, Xiong C (2016) Digital image correlation with gray gradient constraints: Application to spatially variant speckle images. Opt Lasers Eng 77:85–91

    Article  Google Scholar 

  41. Su Y, Gao Z, Fang Z, Liu Y, Wu S (2019) Theoretical analysis on performance of digital speckle pattern: uniqueness, accuracy, precision, and spatial resolution. Opt Express 27(16):22439–22474

    Article  Google Scholar 

  42. Shao X, Dai X, He X (2015) Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation. Opt Lasers Eng 71:9–19

    Article  Google Scholar 

  43. Sun Y, Pang J, Wong C, Fei S (2005) Finite element formulation for a digital image correlation method. Appl Optics 44(34):7357–7363

    Article  Google Scholar 

  44. Ma S, Zhao Z, Xian W (2012) Mesh-based digital image correlation method using higher order isoparametric elements. J Strain Anal Eng 47(3):163–175

    Article  Google Scholar 

  45. Tong W (2013) Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: A review. Strain 49(4):313–334

    Article  Google Scholar 

  46. Su Y, Zhang Q, Xu X, Gao Z (2016) Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors. Opt Lasers Eng 86:132–142

    Article  Google Scholar 

  47. Hai Y, Guo R, Xia H, Feng Y, Zhang Y, He T (2014) Application of the mean intensity of the second derivative in evaluating the speckle patterns in digital image correlation. Opt Lasers Eng 60:32–37

    Article  Google Scholar 

  48. Pan B (2013) Bias error reduction of digital image correlation using Gaussian pre-filtering. Opt Lasers Eng 51:1161–1167

    Article  Google Scholar 

  49. Mazzoleni F, Zappa E, Sutton M, Cigada A (2014) Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns. Opt Lasers Eng 66:19–33

    Article  Google Scholar 

  50. Hansen P (2007) Regularization Tools version 4.0 for Matlab 7.3. Numer Algorithms 46(2):189–194

  51. Hansen P, Jensen T, Rodriguez G (2007) An adaptive pruning algorithm for the discrete L-curve criterion. J Comput Appl Math 198(2):483–492

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang L, Wang T, Jiang Z, Kemao Q, Liu Y, Liu Z, Tang L, Dong S (2015) High accuracy digital image correlation powered by GPU-based parallel computing. Opt Lasers Eng 69:7–12

    Article  Google Scholar 

  53. Wang T, Kemao Q, Seah H, Lin F (2018) A flexible heterogeneous real-time digital image correlation system. Opt Lasers Eng 110:7–17

    Article  Google Scholar 

  54. Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J (2021) Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 277:121098

  55. Huang J, Lin F, Xiong C (2019) Mechanical characterization of single cells based on microfluidic techniques. Trends Analyt Chem 117:47–57

    Article  Google Scholar 

  56. Xue X, Sun Y, Resto-Irizarry A, Yuan Y, Aw Yong K, Zheng Y, Weng S, Shao Y, Chai Y, Studer L, Fu J (2018) Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat Mater 17(7):633–641

    Article  Google Scholar 

  57. Petridou N, Spiro Z, Heisenberg C (2017) Multiscale force sensing in development. Nat Cell Biol 19(6):581–588

    Article  Google Scholar 

  58. Ma S, Meng Z, Chen R, Guan K (2019) The Hippo Pathway: Biology and Pathophysiology. Annu Rev Biochem 88(1):577–604

    Article  Google Scholar 

  59. Kim J, Han S, Lei A, Miyano M, Bloom J, Srivastava V, Stampfer M, Gartner Z, LaBarge M, Sohn L (2018) Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. Microsyst Nanoeng 4(1):17091

    Article  Google Scholar 

  60. Logan D (2017) A first course in the finite element method (6th ed). Cengage Learning

Download references

Acknowledgements

These authors acknowledge the support from National Natural Science Foundation of China (grant nos. 11772004, 11972001 and 91848201), Beijing Natural Science Foundation (grant no. Z200017), and National Key Research and Development Program of China (grant no. 2021YFA1000200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6889 KB)

Appendices

Appendix A: Shape Functions of Nodes

The shape functions of nodes used in the global DIC algorithms are normally the same as those in the classical finite elements [60]. For instance, the 3-node triangular element, usually referred to as T3 element, has the following shape function

$${\varphi }_{i}=\frac{1}{2A}({a}_{i}+{b}_{i}X+{c}_{i}Y)$$
(A1)

where i=1,2,3 for the T3 element, \({a}_{1}={X}_{2}{Y}_{3}-{X}_{3}{Y}_{2}\),\({a}_{2}={X}_{3}{Y}_{1}-{X}_{1}{Y}_{3}\), \({a}_{3}={X}_{1}{Y}_{2}-{X}_{2}{Y}_{1}\), \({b}_{1}={Y}_{2}{-Y}_{3}\), \({b}_{2}={Y}_{3}-{Y}_{1}\), \({b}_{3}={Y}_{1}-{Y}_{2}\), \({c}_{1}={X}_{3}{-X}_{2}\), \({c}_{2}={X}_{1}{-X}_{3}\), \({c}_{3}={X}_{2}{-X}_{1}\), \(({X}_{i},{Y}_{i})\) denotes the node coordinates and A is the area of the element.

Appendix B: Discrete Form of Governing Equation in Equation (4)

To estimate the lower limit of bar length in the virtual truss structure, we first rewrote (equation (2)) as \(T\left({\mathbf{p}}_{t}\right)=F\left(X,Y\right)-G(x,y)\) in an arbitrary element with

$$\left\{\begin{array}{c}F\left(X,Y\right)=\frac{f\left(X,Y\right)-{f}_{m}}{\Delta f}\\ G\left(x,y\right)=\frac{g\left(x,y\right)-{\mathrm{g}}_{m}}{\Delta \mathrm{g}}\end{array}\right.$$
(A2)

For the well-adopted first-order triangular element with three nodes, \({\mathbf{p}}_{t}=[{p}_{t1},{p}_{t2},{p}_{t3},{p}_{t4},{p}_{t5},{p}_{t6}{]}^{T}=[{u}_{t1},{v}_{t1},{u}_{t2},{v}_{t2},{u}_{t3},{v}_{t3}{]}^{T}\). We subsequently expand \(G\left(x,y\right)\) as a first-order Taylor’s series approximately [31], i.e.,

$$\begin{aligned}G\left(x,y\right)= & G\left[X+u\left(X,Y,{\mathbf{p}}_{t}\right),Y+v\left(X,Y,{\mathbf{p}}_{t}\right)\right]\approx G\left(X,Y\right) \\ & +{G}_{X}u\left(X,Y,{\mathbf{p}}_{t}\right) +{G}_{Y}v(X,Y,{\mathbf{p}}_{t})\end{aligned}$$
(A3)

in which \({G}_{x}=\partial G/\partial X\) and \({G}_{Y}=\partial G/\partial Y\). Substituting the above expression into \(T{(\mathbf{p}}_{t})\) yields

$$T{(\mathbf{p}}_{t})\approx F\left(X,Y\right)-\mathrm{G}\left(\mathrm{X},\mathrm{Y}\right)-{G}_{X}u(X,Y,{\mathbf{p}}_{t})-{G}_{Y}v(X,Y,{\mathbf{p}}_{t})$$
(A4)

And

$$\frac{\partial \mathrm{T}{(\mathbf{p}}_{t})}{\partial {P}_{tj}}=\left\{\begin{array}{c}{G}_{X}{\varphi }_{(j+1)/2},j=\mathrm{1,3},5\\ {G}_{Y}{\varphi }_{j/2},j=\mathrm{2,4},6\end{array}\right.$$
(A5)

In this context, we have

$$\sum_{{\Omega }_{t}}T(\mathbf{p})\frac{\partial T(\mathbf{p})}{\partial {\mathbf{p}}_{t}}=\sum_{{\Omega }_{t}}\left\{[F-G-{G}_{X}u-{G}_{Y}v]\frac{\partial T\left(\mathbf{p}\right)}{\partial {p}_{tj}}]\right\}$$
(A6)

Substituting the expression into (equation (4)) gives

$${\mathbf{C}}_{A}\mathbf{p}=\mathbf{R}$$
(A7)

where \({\mathbf{C}}_{A}\) and R are the corresponding coefficient matrix and residual vector, respectively, which have the following forms

$$C_A=\sum_{t=1}^{T_e}\mathbf H_t^T\begin{bmatrix}\sum_{\Omega_t}G_x^2\varphi_{{}_1}^2&\sum_{\Omega_t}G_xG_y\varphi_{{}_1}^2&\sum_{\Omega_t}G_x^2\varphi_1\varphi_2&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_2&\sum_{\Omega_t}G_x^2\varphi_1\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_3\\\sum_{\Omega_t}G_xG_y\varphi_{{}_1}^2&\sum_{\Omega_t}G_y^2\varphi_{{}_1}^2&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_2&\sum_{\Omega_t}G_y^2\varphi_1\varphi_2&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_3&\sum_{\Omega_t}G_y^2\varphi_1\varphi_3\\\sum_{\Omega_t}G_x^2\varphi_1\varphi_2&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_2&\sum_{\Omega_t}G_x^2\varphi_2^2&\sum_{\Omega_t}G_xG_y\varphi_2^2&\sum_{\Omega_t}G_x^2\varphi_2\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_2\varphi_3\\\sum_{\Omega_t}G_xG_y\varphi_1\varphi_2&\sum_{\Omega_t}G_y^2\varphi_1\varphi_2&\sum_{\Omega_t}G_xG_y\varphi_2^2&\sum_{\Omega_t}G_y^2\varphi_2^2&\sum_{\Omega_t}G_xG_y\varphi_2\varphi_3&\sum_{\Omega_t}G_y^2\varphi_2\varphi_3\\\sum_{\Omega_t}G_x^2\varphi_1\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_1\varphi_3&\sum_{\Omega_t}G_x^2\varphi_2\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_2\varphi_3&\sum_{\Omega_t}G_x^2\varphi_3^2&\sum_{\Omega_t}G_xG_y\varphi_3^2\\\sum_{\Omega_t}G_xG_y\varphi_1\varphi_3&\sum_{\Omega_t}G_y^2\varphi_1\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_2\varphi_3&\sum_{\Omega_t}G_y^2\varphi_2\varphi_3&\sum_{\Omega_t}G_xG_y\varphi_3^2&\sum_{\Omega_t}G_y^2\varphi_3^2\end{bmatrix}{\mathbf H}_{\mathrm t}$$
(A8)

And

$$\mathbf{R}=\sum_{{\varvec{t}}=1}^{T_{e}}{{\mathbf{H}}_{t}}^{T}\left[\begin{array}{c}\sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{x}{\varphi }_{1}\\ \begin{array}{c}\sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{Y}{\varphi }_{1}\\ \sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{X}{\varphi }_{2}\\ \begin{array}{c}\sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{Y}{\varphi }_{2}\\ \sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{X}{\varphi }_{3}\\ \sum_{{\Omega }_{t}}[\mathrm{F}-\mathrm{G}]{G}_{Y}{\varphi }_{3}\end{array}\end{array}\end{array}\right]$$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X.C., Yuan, Y., Liu, X.Y. et al. Coupling Self-Adaptive Meshing-Based Regularization and Global Image Correlation for Spatially Heterogeneous Deformation Characterization. Exp Mech 62, 779–797 (2022). https://doi.org/10.1007/s11340-022-00826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-022-00826-w

Keywords

Navigation