Skip to main content
Log in

A Self Adaptive Global Digital Image Correlation Algorithm

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A novel Digital Image Correlation algorithm is presented, focussing on accurately determining small strains with high strain gradients. Principles from p-adaptive finite element analysis are implemented to obtain a self adapting higher order mesh. The self adapting principle reduces the dependency of the results on the user’s input and the higher orders insure sufficient degrees of freedom. Performance of the algorithm, in terms of resolution and spatial resolution, is checked and compared to the traditional local method. The results indicate that the introduced method is appropriate for accurately measuring high heterogeneous deformations and that the obtained data is to a large extent user independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Avril S, Bonnet M, Bretelle A, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  2. Rastogi PK (2000) Photomechanics: topics in applied physics. Springer

  3. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements. Springer

  4. Lagattu F, Brillaud J, Lafarie-Frenot MC (2004) High strain gradient measurements by using digital image correlation technique. Mater Charact 53:17–28

    Article  Google Scholar 

  5. MatchID MatchID 2D Software. http://www.matchid.org

  6. Dantec Dynamics Dantec DIC

  7. GOM optical measuring techniques Aramis 2D Software. http://www.gom.com/EN/index.html

  8. Correlated solutions Inc Vic-2D Software. http://www.correlatedsolutions.com

  9. LaVision Davis Software. http://www.lavision.de/en/products/davis.php

  10. Lava P, Cooreman S, Debruyne D (2010) Study of systematic errors in strain fields obtained via dic using heterogeneous deformation generated by plastic fea. Opt Las Eng 48:457–468

    Article  Google Scholar 

  11. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and point wise least squares for displacement field and strain field measurements. Opt Las Eng 45:865–874

    Article  Google Scholar 

  12. Pan B, Qian K, Xie H, Asundi A (2008) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:17

    Google Scholar 

  13. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in dic using deformation fields generated by plastic fea. Opt Las Eng 47:747–753

    Article  Google Scholar 

  14. Bornert M, Bremand F, Doumalin P, Dupre JC, Fazzini M, Grediac M, Hild F, Roux S, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel P, Vacher Y, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Ex Mech 49:353–370

    Article  Google Scholar 

  15. Cheng P, Sutton M.A, Schreier H.W, McNeill S.R (2002) Full-field speckle pattern image correlation with b-spline defromation function. Ex Mech 42:344–352

    Article  Google Scholar 

  16. Besnard G, Hild, Roux S (2006) “finite-element” displacement field analysis from digital images. Ex Mech 46:789–803

  17. Pan B (2010) Recent progress in digital image correlation. Ex Mech 51:1223–1235

    Article  Google Scholar 

  18. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41:167–175

    Article  Google Scholar 

  19. Zienkiewicz OC, Taylor RL (2000) The finite element method. Volume 1: the basis

  20. Hild F, Roux S (2011) Comparison of local and global approaches to digital image correlation. Ex Mech 52:1503–1519

    Article  Google Scholar 

  21. Leclerc H, Perie J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. Comput Vis/Comput Graph Collab Tech 5496:161–171

    MathSciNet  Google Scholar 

  22. Hild F, Roux S, Gras R, Guerrero N, Marante M.E, Florez-Lopezc J (2009) Displacement measurement technique for beam kinematics. Opt Las Eng 47:495–503

    Article  Google Scholar 

  23. Mortazavi F (2013) Development of a global digital image correlation approach for fast high-resolution displacement measurements. PhD thesis, ECOLE POLYTECHNIQUE DE MONTREAL

  24. Babuska I , Whiteman JR, Strouboulis T (2011) Finite elements an introduction to the method and error estimation. Oxford University Press

  25. Akin JE (2005) Finite element analysis. With error estimators. Elsivier

  26. Szabo B, Duster A, Rank E (2004) The p-version of the finite element method. Encyclopedia of Computational Mechanics

  27. Chongy H (1990) An inverse transformation for quadrilateral isoparametric elements. Finite Elem Anal Des 7(2):159–166

    Article  Google Scholar 

  28. Szabo B, Babuska I (1991) Finite element analysis. Wiley

  29. Gratsch T, Bathe KJ (2003) A posteriori error estimation techniques in practical finite element analysis. Comput Struct 83:235–265

    Article  MathSciNet  Google Scholar 

  30. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Int J Numer Methods Eng 33(7):1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  31. Zienkiewicz OC, Zhu JZ, Gong NG (1989) Effective and practical h-p-version adaptive analysis procedures for the finite element method. Int J Numer Methods Eng 25(4):879–891

    Article  MathSciNet  Google Scholar 

  32. PTCUniversity (2012) The h- and p-versions of finte elements

  33. Promwungkwa A (1998) Data structure and error estimation for an Adaptive p-Version. PhD thesis, State University Verginia

  34. Chrysochoos A, Surrel Y (2012) Chapter 1. Basics of metrology and introduction to techniques. Wiley

  35. Grediac M, Sur F (2014) Effect of sensor noise on the resolution and spatial resolution of displacement and strain maps estimated with the grid method. Strain 50(1):1–27

    Article  MathSciNet  Google Scholar 

  36. (2007) ISO/IEC guide 99 - International vocabulary of metrology – Basic and general concepts and associated terms (VIM) ISO

  37. Wang Y, Lava P, Coppieters S, De Strycker M, Van Houtte P, Debruyne D (2012) Investigation of the uncertainty of dic under heterogeneous strain states with numerical tests. Strain 48(6):453–62

    Article  Google Scholar 

  38. Rossi M, Lava P, Pierron F, Debruyne D, Sasso M (2014) Error assessment on combining dic and vfm to design an optimized experimental set-up for material identification. Submitted - International Journal for Numerical Methods in Engineering

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wittevrongel.

Additional information

This publication was supported by Agency for Innovation by Science and Technology in Flanders (IWT).

Appendix: Legendre Shape Functions

Appendix: Legendre Shape Functions

Legendre shape functions are a combination of function P p (χ):

$$ P_{p}(\chi ) = \frac{1}{(p-2)!2^{p-2}} \frac{d^{p-2}}{d\chi^{p-2}}[(1-\chi^{2})^{p-1}] $$
(61)

In a p-element shape functions are assigned to nodes, edges or faces identified in Fig 27.

Fig. 27
figure 27

Element nodes, edges and face

The shape functions that can be used are shown in Table 8 with p the polynomial order.

Table 8 Hierarchical shape functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittevrongel, L., Lava, P., Lomov, S.V. et al. A Self Adaptive Global Digital Image Correlation Algorithm. Exp Mech 55, 361–378 (2015). https://doi.org/10.1007/s11340-014-9946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9946-3

Keywords

Navigation