Experimental Mechanics

, Volume 52, Issue 6, pp 607–617 | Cite as

MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature

  • B. Pant
  • S. Choi
  • E. K. Baumert
  • B. L. Allen
  • S. Graham
  • K. Gall
  • O. N. Pierron
Article

Abstract

Microelectromechanical system (MEMS) devices based on electro-thermal actuation have been used over the past few years to perform tensile tests on nanomaterials. However, previous MEMS designs only allowed small (e.g., <100 nm) total displacement range without a significant increase in temperature near the nanospecimens (<20°C), thereby limiting the design of the load sensor or the range of nanomaterials to test. Here we characterize the thermo-mechanical behavior of three MEMS devices, using optical displacement measurements, micro-Raman temperature measurements, and finite element modeling. We observe the increase in temperature near the nanospecimen gap per displacement of thermal actuator to linearly decrease with the distance between nanospecimen gap and thermal actuator. We also present a MEMS device that can provide up to 1.6 μm of total displacement with less than 10°C increase in temperature near the nanospecimens, more than one order of magnitude improvement with respect to previously published MEMS material testing setups. This MEMS device can be used for accurate, temperature-controlled tensile testing of nanocrystalline metallic nanobeams.

Keywords

MEMS Nanomechanics Nanocrystalline metals 

References

  1. 1.
    Agrawal R, Peng B, Espinosa HD (2009) Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett 9(12):4177–4183CrossRefGoogle Scholar
  2. 2.
    Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires-A combined experimental-computational approach. Nano Lett 8(11):3668–3674CrossRefGoogle Scholar
  3. 3.
    Peng B, Locascio M, Zapol P, Li SY, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3(10):626–631CrossRefGoogle Scholar
  4. 4.
    Richter G, Hillerich K, Gianola DS, Monig R, Kraft O, Volkert CA (2009) Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Lett 9(8):3048–3052CrossRefGoogle Scholar
  5. 5.
    Desai AV, Haque MA Mechanical properties of ZnO nanowires. In, 2007. Elsevier Science Sa, pp 169–176.Google Scholar
  6. 6.
    Zhang DF, Breguet JM, Clavel R, Philippe L, Utke I, Michler J (2009) In situ tensile testing of individual Co nanowires inside a scanning electron microscope. Nanotechnology 20(36):365706CrossRefGoogle Scholar
  7. 7.
    Zhang DF, Breguet JM, Clavel R, Sivakov V, Christiansen S, Michler J (2010) Electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Sys 19(3):663–674CrossRefGoogle Scholar
  8. 8.
    Greer JR, Nix WD (2005) Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys a-Mater Sci Process 80(8):1625–1629CrossRefGoogle Scholar
  9. 9.
    Greer JR, Nix WD (2006) Nanoscale gold pillars strengthened through dislocation starvation. Physical Review B 73(24)Google Scholar
  10. 10.
    Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia 53(6):1821–1830CrossRefGoogle Scholar
  11. 11.
    Kim J-Y, Greer JR (2009) Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Materialia 57(17):5245–5253CrossRefGoogle Scholar
  12. 12.
    Kim J-Y, Jang D, Greer JR (2009) Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scr Mater 61(3):300–303CrossRefGoogle Scholar
  13. 13.
    Philippe L, Wang Z, Peyrot I, Hassel AW, Michler J (2009) Nanomechanics of rhenium wires: elastic modulus, yield strength and strain hardening. Acta Materialia 57(14):4032–4035CrossRefGoogle Scholar
  14. 14.
    Brown JJ, Suk JW, Singh G, Baca AI, Dikin DA, Ruoff RS, Bright VM (2009) Microsystem for nanofiber electromechanical measurements. Sens Actuator A-Phys 155(1):1–7CrossRefGoogle Scholar
  15. 15.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529CrossRefGoogle Scholar
  16. 16.
    Shan ZW, Mishra RK, Asif SAS, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7(2):115–119CrossRefGoogle Scholar
  17. 17.
    Haque MA, Saif MTA (2004) Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. Proc Natl Acad Sci United States America 101(17):6335–6340CrossRefGoogle Scholar
  18. 18.
    Lu SN, Guo ZY, Ding WQ, Dikin DA, Lee J, Ruoff RS (2006) In situ mechanical testing of templated carbon nanotubes. Rev Sci Instrum 77(12):125101CrossRefGoogle Scholar
  19. 19.
    Ostlund F, Rzepiejewska-Malyska K, Leifer K, Hale LM, Tang YY, Ballarini R, Gerberich WW, Michler J (2009) Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv Funct Mater 19(15):2439–2444CrossRefGoogle Scholar
  20. 20.
    Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of a MEMS-based material testing system for nanomechanical characterization. J Microelectromech Sys 16(5):1219–1231CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci United States America 102(41):14503–14508CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and X-ray microscopy tensile testing of nanostructures. Appl Phys Let 86(1):013506–013501CrossRefGoogle Scholar
  24. 24.
    Ganesan Y, Lu Y, Peng C, Lu H, Ballarini R, Lou J (2010) Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J Microelectromech Sys 19(3):675–682CrossRefGoogle Scholar
  25. 25.
    Lu Y, Ganesan Y, Lou J (2010) A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exper Mech 50(1):47–54CrossRefGoogle Scholar
  26. 26.
    Zhang DF, Drissen W, Breguet JM, Clavel R, Michler J (2009) A high-sensitivity and quasi-linear capacitive sensor for nanomechanical testing applications. J Micromech Microeng 19:075003CrossRefGoogle Scholar
  27. 27.
    Lu SB, Guo ZY, Ding WQ, Ruoff RS (2006) Analysis of a microelectromechanical system testing stage for tensile loading of nanostructures. Rev Sci Instrum 77(5):056103CrossRefGoogle Scholar
  28. 28.
    Lu SN, Dikin DA, Zhang SL, Fisher FT, Lee J, Ruoff RS (2004) Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev Sci Instrum 75(6):2154–2162. doi:10.1063/1.1710703 CrossRefGoogle Scholar
  29. 29.
    Haque MA, Espinosa HD, Lee HJ (2010) MEMS for in situ testing-handling, actuation, loading, and displacement measurements. MRS Bull 35(5):375–381CrossRefGoogle Scholar
  30. 30.
    Zhu T, Li J, Samanta A, Leach A, Gall K (2008) Temperature and strain-rate dependence of surface dislocation nucleation. Phys Rev Lett 100:025502CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Pant B, Allen BL, Zhu T, Gall K, Pierron ON (2011) A versatile microelectromechanical system for nanomechanical testing. Appl Phys Let 98(5):053506CrossRefGoogle Scholar
  33. 33.
    Beechem T, Graham S, Kearney SP, Phinney LM, Serrano JR (2007) Invited article: simultaneous mapping of temperature and stress in microdevices using micro-Raman spectroscopy. Rev Sci Instrum 78(6)Google Scholar
  34. 34.
    Huang QA, Lees NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70CrossRefGoogle Scholar
  35. 35.
    Mankame ND, Ananthasuresh GK (2001) Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J Micromech Microeng 11(5):452–462CrossRefGoogle Scholar
  36. 36.
    Brantley WA (1973) Calculated elastic constants for stress problems associated with semiconductors devices. J Appl Phys 44(1):534–535CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2011

Authors and Affiliations

  • B. Pant
    • 1
  • S. Choi
    • 1
  • E. K. Baumert
    • 1
  • B. L. Allen
    • 1
  • S. Graham
    • 1
  • K. Gall
    • 1
  • O. N. Pierron
    • 1
  1. 1.G.W. Woodruff School of Mechanical Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations