Skip to main content
Log in

Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials

  • Experimental Solid Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

MEMS-based tensile testing devices are powerful tools for mechanical characterization of nanoscale materials. In a typical configuration, their design includes an actuator to deliver loads/displacements to a sample, and a sensing unit for load measurement. The sensing unit consists of a flexible structure, which deforms in response to the force imposed to the sample. Such deformation, while being necessary for the sensing function, may become a source of instability. When the sample experiences a load drop, as it may result from yield, necking or phase transitions, the elastic energy accumulated by the sensor can be released, thus leading to loss of the displacement-controlled condition and dynamic failure. Here, we report a newly-developed MEMS testing system where the sensor is designed to constantly keep its equilibrium position through an electrostatic feedback-control. We show design, implementation, and calibration of the system, as well as validation by tensile testing of silver nanowires. The implemented system allows capture of softening events and affords significant improvement on the resolution of stress–strain curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Gao H, Yan R, Yang P (2014) 25th Anniversary article: semiconductor nanowires – synthesis, characterization, and applications. Adv Mater 26:2137

    Article  Google Scholar 

  2. Yan H, Choe HS, Nam SW, Hu YJ, Das S, Klemic JF, Ellenbogen JC, Lieber CM (2011) Programmable nanowire circuits for nanoprocessors. Nature 470(7333):240–244

    Article  ADS  Google Scholar 

  3. Pantano MF, Espinosa HD, Pagnotta L (2012) Mechanical characterization of materials at small length scales. J Mech Sci Technol 26(2):545–561

    Article  Google Scholar 

  4. Haque MA, Espinosa HD, Lee HJ (2010) MEMS for in situ testing-handling, actuation, loading, and displacement measurements. MRS Bull 35(5):375–381

    Article  Google Scholar 

  5. Hosseinian E, Pierron ON (2013) Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5(24):12532–12541

    Article  ADS  Google Scholar 

  6. Guo H, Chen K, Oh Y, Wang K, Dejoie C, Asif SAS, Warren OL, Shan ZW, Wu J, Minor AM (2011) Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires. Nano Lett 11(8):3207–3213

    Article  Google Scholar 

  7. Zhang Y, Liu XY, Ru CH, Zhang YL, Dong LX, Sun Y (2011) Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J Microelectromech Syst 20(4):959–967

    Article  Google Scholar 

  8. Zhang DF, Breguet JM, Clavel R, Sivakov V, Christiansen S, Michler J (2010) Electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Syst 19(3):663–674

    Article  Google Scholar 

  9. Naraghi M, Ozkan T, Chasiotis I, Hazra SS, de Boer MP (2010) MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers. J Micromech Microeng 20(12):125022

    Article  Google Scholar 

  10. Brown JJ, Suk JW, Singh G, Baca AI, Dikin DA, Ruoff RS, Bright VM (2009) Microsystem for nanofiber electromechanical measurements. Sens Actuators a-Phys 155(1):1–7

    Article  Google Scholar 

  11. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA 102(41):14503–14508

    Article  ADS  Google Scholar 

  12. Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7):1769–1777

    Article  ADS  Google Scholar 

  13. Kahn H, Ballarini R, Mullen RL, Heuer AH (1990) Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc R Soc a-Math Phys Eng Sci 1999(455):3807–3823

    Google Scholar 

  14. Espinosa HD, Bernal RA, Minary-Jolandan M (2012) A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv Mater 24(34):4656–4675

    Article  Google Scholar 

  15. Espinosa HD, Bernal RA, Filleter T (2012) In situ TEM electromechanical testing of nanowires and nanotubes. Small 8(21):3233–3252

    Article  Google Scholar 

  16. Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of a MEMS-based material testing system for nanomechanical characterization. J Microelectromech Syst 16(5):1219–1231

    Article  Google Scholar 

  17. Abbas K, Alaie S, Leseman ZC (2012) Design and characterization of a low temperature gradient and large displacement thermal actuators for in situ mechanical testing of nanoscale materials. J Micromech Microeng 22(12):125027

    Article  Google Scholar 

  18. Agrawal R, Peng B, Espinosa HD (2009) Experimental-computational investigation of ZnO nanowires strength and fracture. Nano Lett 9(12):4177–4183

    Article  ADS  Google Scholar 

  19. Leach AM, McDowell M, Gall K (2007) Deformation of top-down and bottom-up silver nanowires. Adv Funct Mater 17(1):43–53

    Article  Google Scholar 

  20. Johnston WG (1962) Yield points and delay times in single crystals. J Appl Phys 33(9):2716–2730

    Article  ADS  Google Scholar 

  21. Dieter GE (1976) Mechanical metallurgy, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  22. Chin GY, Hosford WF, Backofen WA (1964) Ductile fracture of aluminum. Trans Metall Soc Aime 230(3):437

    Google Scholar 

  23. Hsu TC, Littlejohn GS, Marchbank BM (1965) Elongation in the tension test as a measure of ductility. Proceedings Am. Soc. Testing Mats. 65:874

    Google Scholar 

  24. Wu ZX, Zhang YW, Jhon MH, Gao HJ, Srolovitz DJ (2012) Nanowire failure: long = brittle and short = ductile. Nano Lett 12(2):910–914

    Article  ADS  Google Scholar 

  25. Sarraf EH, Cousins B, Cretu E, Mirabbasi S (2011) Design and implementation of a novel sliding mode sensing architecture for capacitive MEMS accelerometers. J Micromech Microeng 21(11):115033

    Article  Google Scholar 

  26. Cui J, Guo ZY, Zhao QC, Yang ZC, Hao YL, Yan GZ (2011) Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J Microelectromech Syst 20(6):1382–1394

    Article  Google Scholar 

  27. Veryeri I, Basdogan I (2011) Adjusting the vibratory response of a micro Mirror via position and velocity feedback. J Vib Control 17(1):69–79

    Article  Google Scholar 

  28. Vagia M, Koveos Y, Nikolakopoulos G, Tzes A (2010) Robust proportional-integral-derivative controller design for an electrostatic micro-actuator with measurement uncertainties. IET Control Theory Appl 4(12):2793–2801

    Article  Google Scholar 

  29. Koo BJ, Zhang XM, Dong JY, Salapaka SM, Ferreira PM (2012) A 2 degree-of-freedom SOI-MEMS translation stage with closed-loop positioning. J Microelectromech Syst 21(1):13–22

    Article  Google Scholar 

  30. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242–253

    Article  Google Scholar 

  31. Zhu Y, Moldovan N, Espinosa HD (2005) A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett 86(1):013506

    Article  ADS  Google Scholar 

  32. Filleter T, Ryu S, Kang K, Yin J, Bernal RA, Sohn K, Li SY, Huang JX, Cai W, Espinosa HD (2012) Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8(19):2986–2993

    Article  Google Scholar 

  33. Bernal RA, Agrawal R, Peng B, Bertness KA, Sanford NA, Davydov AV, Espinosa HD (2011) Effect of growth orientation and diameter on the elasticity of GaN nanowires. a combined in situ TEM and atomistic modeling investigation. Nano Lett 11(2):548–555

    Article  ADS  Google Scholar 

  34. Qin QQ, Zhu Y (2013) Temperature control in thermal microactuators with applications to in situ nanomechanical testing. Appl Phys Lett 102(1):013101

    Article  ADS  Google Scholar 

  35. Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238

    Article  Google Scholar 

  36. Okada Y, Tokumaru Y (1984) Precise determination of lattice-parameter and thermal-expansion coefficient of silicon between 300 and 1500-K. J Appl Phys 56(2):314–320

    Article  ADS  Google Scholar 

  37. Li L, Begbie M, Brown G, Uttamchandani D (2007) Design, simulation and characterization of a MEMS optical scanner. J Micromech Microeng 17(9):1781–1787

    Article  Google Scholar 

  38. Miller DC, Boyce BL, Dugger MT, Buchheit TE, Gall K (2007) Characteristics of a commercially available silicon-on-insulator MEMS material. Sens actuators a-Phys 138(1):130–144

    Article  Google Scholar 

  39. Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam

    Google Scholar 

  40. Yamahata C, Collard D, Legrand B, Takekawa T, Kunternura M, Hashiguchi G, Fujita H (2008) Silicon nanotweezers with subnanometer resolution for the micromanipulation of biomolecules. J Microelectromech Syst 17(3):623–631

    Article  Google Scholar 

  41. MEMSCAP (2011) SOIMUMPS design handbook, Rev. 7. http://www.memscap.com/en_mumps.html. Accessed July 2013

  42. Ogata K (2008) Modern control engineering, 3rd edn. Prentice-Hall, Upper Saddle River

  43. Agrawal R, Peng B, Gdoutos EE, Espinosa HD (2008) Elasticity size effects in ZnO nanowires-A combined experimental-computational approach. Nano Lett 8(11):3668–3674

    Article  ADS  Google Scholar 

  44. Gao YJ, Fu YQ, Sun W, Sun YL, Wang HB, Wang FY, Zhao JW (2012) Investigation on the mechanical behavior of fivefold twinned silver nanowires. Comput Mater Sci 55:322–328

    Article  Google Scholar 

  45. Wu JY, Nagao S, He JY, Zhang ZL (2011) Role of fivefold twin boundary on the enhanced mechanical properties of fcc Fe nanowires. Nano Lett 11(12):5264–5273

    Article  ADS  Google Scholar 

  46. Cao AJ, Wei YG (2006) Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys Rev B 74(21):214108

    Article  ADS  Google Scholar 

Download references

Acknowledgments

H.D.E. gratefully acknowledges support from NSF through award No. DMR-0907196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio D. Espinosa.

Additional information

Maria F. Pantano and Rodrigo A. Bernal have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantano, M.F., Bernal, R.A., Pagnotta, L. et al. Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica 50, 549–560 (2015). https://doi.org/10.1007/s11012-014-9950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9950-9

Keywords

Navigation