Skip to main content

Microelectromechanical Systems (MEMS)-Based Testing of Materials

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 426 Accesses

Abstract

Mechanical behavior of micro- and nanoscale materials has received considerable attention in recent years because of their widespread use in micro−/nanotechnology applications. These materials are also intriguing from a scientific standpoint because their small-size scale results in mechanical behavior that is significantly different from the behavior of macroscale materials. As a result, a variety of experimental methodologies have been developed to accurately determine the mechanical properties (modulus, strength, fracture toughness, etc.) of micro- and nanoscale materials and uncover the microscopic mechanisms that lead to those properties. Among these approaches, microelectromechanical systems (MEMS)-based platforms have proven to be highly suitable because of their capability to apply and resolve extremely small forces (nN) and displacements (nm). In addition, MEMS-based testing platforms, because of their small size, are ideal for in situ characterization in electron and scanning probe microscopes, which often have stringent space limitations. This chapter provides an overview of the development and advances in MEMS-based materials characterization with an emphasis on in situ techniques. Different actuation and sensing mechanisms as well as device configurations for various types of testing (tensile, fatigue, thermomechanical) are reviewed. Key results and insights obtained from the nanomechanical characterization of thin films, nanowires, and nanotubes using MEMS-based platforms are summarized. Finally, some of the challenges and opportunities for MEMS-based micro- and nanoscale materials characterization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tang WC, Nguyen T-CH, Howe RT. Laterally driven polysilicon resonant microstructures. Sensors Actuators. 1989;20(1):25–32.

    Article  Google Scholar 

  2. Zhu Y, Chang T-HA. Review of microelectromechanical systems for nanoscale mechanical characterization. J Micromech Microeng. 2015;25(9):93001.

    Article  Google Scholar 

  3. Huang Q-A, Lee NKS. Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng. 1999;9(1):64.

    Article  Google Scholar 

  4. Que L, Park J-S, Gianchandani YB. Bent-beam electrothermal actuators-part I: single beam and cascaded devices. J Microelectromech Syst. 2001;10(2):247–54.

    Article  Google Scholar 

  5. Guan C, Zhu Y. An electrothermal microactuator with Z-shaped beams. J Micromech Microeng. 2010;20(8):85014.

    Article  Google Scholar 

  6. Abbas K, Alaie S, Leseman ZC. Design and characterization of a low temperature gradient and large displacement thermal actuators for in situ mechanical testing of nanoscale materials. J Micromech Microeng. 2012;22(12):125027.

    Article  Google Scholar 

  7. Haque MA, Espinosa HD, Lee HJ. MEMS for in situ testing – handling, actuation, loading, and displacement measurements. MRS Bull. 2010;35(5):375–81.

    Article  Google Scholar 

  8. Haque MA, Saif MTA. In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech. 2002;42(1):123–8.

    Article  Google Scholar 

  9. Gianola DS, Eberl C. Micro- and nanoscale tensile testing of materials. JOM. 2009;61(3):24–35.

    Article  Google Scholar 

  10. Sharpe WN Jr, Turner KT, Edwards RL. Tensile testing of polysilicon. Exp Mech. 1999;39(3):162–70.

    Article  Google Scholar 

  11. Hemker KJ, Sharpe WN, Microscale J. Characterization of mechanical properties. Annu Rev Mater Res. 2007;37(1):93–126.

    Article  Google Scholar 

  12. Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 2006;54(8):2253–63.

    Article  Google Scholar 

  13. Gianola DS, Sedlmayr A, Mönig R, Volkert CA, Major RC, Cyrankowski E, et al. In situ nanomechanical testing in focused ion beam and scanning electron microscopes. Rev Sci Instrum. 2011;82(6):63901.

    Article  Google Scholar 

  14. Singh SS, Sarkar R, Xie H-X, Mayer C, Rajagopalan J, Chawla N. Tensile behavior of single-crystal tin whiskers. J Electron Mater. 2014;43(4):978–82.

    Article  Google Scholar 

  15. Brown JJ, Baca AI, Bertness KA, Dikin DA, Ruoff RS, Bright VM. Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages. Sensors Actuators A Phys. 2011;166(2):177–86.

    Article  Google Scholar 

  16. Greil J, Lugstein A, Zeiner C, Strasser G, Bertagnolli E. Tuning the electro-optical properties of germanium nanowires by tensile strain. Nano Lett. 2012;12(12):6230–4.

    Article  Google Scholar 

  17. Read DT, Dally JW. A new method for measuring the strength and ductility of thin films. J Mater Res. 1993;8(7):1542–9.

    Article  Google Scholar 

  18. Guo H, Chen K, Oh Y, Wang K, Dejoie C, Syed Asif SA, et al. Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires. Nano Lett. 2011;11(8):3207–13.

    Article  Google Scholar 

  19. Oh Y, Cyrankowski E, Shan Z, Asif SAS. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer [Internet]. US8434370 B2, 2013 [cited 2016 Nov 21]. Available from: http://www.google.com/patents/US8434370.

  20. Haque MA, Saif MTA. In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res. 2005;20(7):1769–77.

    Article  Google Scholar 

  21. Han JH, Saif MTA. In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev Sci Instrum. 2006;77(4):45102.

    Article  Google Scholar 

  22. Desai AV, Haque MA. Test bed for mechanical characterization of nanowires. J Nanoengineering Nanosystems. 2005;219(2):57–65.

    Google Scholar 

  23. Desai AV, Haque MA. Mechanical properties of ZnO nanowires. Sensors Actuators A Phys. 2007;134(1):169–76.

    Article  Google Scholar 

  24. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum. 2007;78(8):85108.

    Article  Google Scholar 

  25. Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y. Mechanical deformation and failure of electrospun polyacrylonitrile nanofibers as a function of strain rate. Appl Phys Lett. 2007;91(15):151901.

    Google Scholar 

  26. Zhu Y, Moldovan N, Espinosa HD. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl Phys Lett. 2005;86(1):13506.

    Article  Google Scholar 

  27. Zhu Y, Espinosa HD. An electromechanical material testing system for in situ electron microscopy and applications. PNAS. 2005;102(41):14503–8.

    Article  Google Scholar 

  28. Zhang D, Breguet JM, Clavel R, Sivakov V, Christiansen S, Michler J. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Syst. 2010;19(3):663–74.

    Article  Google Scholar 

  29. Pantano MF, Bernal RA, Pagnotta L, Espinosa HD. Multiphysics design and implementation of a microsystem for displacement-controlled tensile testing of nanomaterials. Meccanica. 2014;50(2):549–60.

    Article  Google Scholar 

  30. Hosseinian E, Pierron ON. Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale. 2013;5(24):12532–41.

    Article  Google Scholar 

  31. Dai S, Zhao J, Xie L, Cai Y, Wang N, Zhu J. Electron-beam-induced elastic–plastic transition in Si nanowires. Nano Lett. 2012;12(5):2379–85.

    Article  Google Scholar 

  32. Zheng K, Wang C, Cheng Y-Q, Yue Y, Han X, Zhang Z, et al. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat Commun. 2010;1:1(3):1–8.

    Article  Google Scholar 

  33. Sarkar R, Rentenberger C, Rajagopalan J. Electron beam induced artifacts during in situ TEM deformation of nanostructured metals. Sci Rep. 2015;5:16345.

    Article  Google Scholar 

  34. Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K. High cycle fatigue in the transmission electron microscope. Nano Lett. 2016;16(8):4946–53.

    Article  Google Scholar 

  35. Chang T-H, Zhu Y. Microelectromechanical system for thermomechanical testing of nanostructures. Appl Phys Lett. 2013;103(26):263114.

    Google Scholar 

  36. Kang W, Saif MTA. A novel SiC MEMS apparatus for in situ uniaxial testing of micro/nanomaterials at high temperature. J Micromech Microeng. 2011;21(10):105017.

    Article  Google Scholar 

  37. Sim G-D, Park J-H, Uchic MD, Shade PA, Lee S-B, Vlassak JJ. An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 2013;61(19):7500–10.

    Article  Google Scholar 

  38. Agrawal R, Peng B, Gdoutos EE, Espinosa HD. Elasticity size effects in ZnO nanowires−a combined experimental-computational approach. Nano Lett. 2008;8(11):3668–74.

    Article  Google Scholar 

  39. Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B. 2012;85(4):045443.

    Google Scholar 

  40. Rajagopalan J, Han JH, Saif MTA. Plastic deformation recovery in freestanding Nanocrystalline aluminum and gold thin films. Science. 2007;315(5820):1831–4.

    Article  Google Scholar 

  41. Wei X, Kysar JW. Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater. 2011;59(10):3937–45.

    Article  Google Scholar 

  42. Lonardelli I, Almer J, Ischia G, Menapace C, Molinari A. Deformation behavior in bulk nanocrystalline-ultrafine aluminum: in situ evidence of plastic strain recovery. Scr Mater. 2009;60(7):520–3.

    Article  Google Scholar 

  43. Rajagopalan J, Han JH, Saif MTA. Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr Mater. 2008;59(7):734–7.

    Article  Google Scholar 

  44. Qin Q, Yin S, Cheng G, Li X, Chang T-H, Richter G, et al. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.

    Article  Google Scholar 

  45. Jonnalagadda KN, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, et al. Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech. 2010;50(1):25–35.

    Article  Google Scholar 

  46. Karanjgaokar NJ, C-S O, Lambros J, Chasiotis I. Inelastic deformation of nanocrystalline au thin films as a function of temperature and strain rate. Acta Mater. 2012;60(13–14):5352–61.

    Article  Google Scholar 

  47. Izadi E, Rajagopalan J. Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr Mater. 2016;114:65–9.

    Article  Google Scholar 

  48. Zener C. Elasticity and anelasticity of metals. Chicago: University of Chicago Press; 1948.

    MATH  Google Scholar 

  49. Cheng G, Miao C, Qin Q, Li J, Xu F, Haftbaradaran H, et al. Large anelasticity and associated energy dissipation in single-crystalline nanowires. Nat Nanotechnol. 2015;10(8):687–91.

    Article  Google Scholar 

  50. Kang W, Saif MTA. In situ study of size and temperature dependent brittle-to-ductile transition in single crystal silicon. Adv Funct Mater. 2013;23(6):713–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannathan Rajagopalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rajagopalan, J. (2018). Microelectromechanical Systems (MEMS)-Based Testing of Materials. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics