Skip to main content
Log in

Real-time prediction of disordered breathing events in people with obstructive sleep apnea

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Conventional therapies for obstructive sleep apnea (OSA) are effective but suffer from poor patient adherence and may not fully alleviate major OSA-associated cardiovascular risk factors or improve certain aspects of quality of life. Predicting the onset of disordered breathing events in OSA patients may lead to improved strategies for treating OSA and inform our understanding of underlying disease mechanisms. In this work, we describe a deployable system capable of performing real-time predictions of sleep disordered breathing events in patients diagnosed with OSA, providing a novel approach for gaining insight into OSA pathophysiology, discovering population subgroups, and improving therapies.

Methods

LArge Memory STorage and Retrieval artificial neural networks with 864 different configurations were applied to polysomnogram records from 64 patients. Wavelet transforms, measures of entropy, and other statistics were applied to six physiological signals to provide network inputs. Approximate statistical tests were used to determine the best performing network for each patient. The most important predictors of disordered breathing events in OSA patients were determined by analyzing internal network parameters.

Results

The average optimized individual prediction sensitivity and specificity were 0.81 and 0.77, respectively. Predictions were better than random guessing for all OSA patients. Analysis of internal network parameters revealed a high degree of heterogeneity among disordered breathing event predictors and may reveal patient subgroups.

Conclusions

We report the first practical system to predict individual disordered breathing events in a heterogeneous group of patients diagnosed with OSA. The pattern of disordered breathing predictors suggests variable underlying pathophysiological mechanisms and highlights the need for an individualized approach to OSA diagnosis, therapy, and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peppard PE, Young T, Barnet JH et al (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. doi:10.1093/aje/kws342

    Google Scholar 

  2. Morrell MJ, Jackson ML, Twigg GL et al (2010) Changes in brain morphology in patients with obstructive sleep apnoea. Thorax 65:908–914. doi:10.1136/thx.2009.126730

    Article  CAS  PubMed  Google Scholar 

  3. Mulgrew AT, Ryan CF, Fleetham JA et al (2007) The impact of obstructive sleep apnea and daytime sleepiness on work limitation. Sleep Med 9:42–53. doi:10.1016/j.sleep.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  4. Omachi TA, Claman DM, Blanc PD, Eisner MD (2009) Obstructive sleep apnea: a risk factor for work disability. Sleep 32:791–798

    PubMed Central  PubMed  Google Scholar 

  5. Tregear S, Reston J, Schoelles K, Phillips B (2009) Obstructive sleep apnea and risk of motor vehicle crash: systematic review and meta-analysis. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 5:573–581

    Google Scholar 

  6. Moyer CA, Sonnad SS, Garetz SL et al (2001) Quality of life in obstructive sleep apnea: a systematic review of the literature. Sleep Med 2:477–491

    Article  CAS  PubMed  Google Scholar 

  7. Bagai K (2010) Obstructive sleep apnea, stroke, and cardiovascular diseases. Neurologist 16:329–339. doi:10.1097/NRL.0b013e3181f097cb

    Article  PubMed  Google Scholar 

  8. Rasche K, Keller T, Tautz B et al (2010) Obstructive sleep apnea and type 2 diabetes. Eur J Med Res 15(Suppl 2):152–156

    PubMed  Google Scholar 

  9. Kohli P, Balachandran JS, Malhotra A (2011) Obstructive sleep apnea and the risk for cardiovascular disease. Curr Atheroscler Rep 13:138–146. doi:10.1007/s11883-011-0161-8

    Article  PubMed  Google Scholar 

  10. McDaid C, Griffin S, Weatherly H et al (2009) Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea-hypopnoea syndrome: a systematic review and economic analysis. Health Technol Assess Winch Engl 13(1–119):143–274. doi:10.3310/hta13040

    Google Scholar 

  11. Avlonitou E, Kapsimalis F, Varouchakis G et al (2011) Adherence to CPAP therapy improves quality of life and reduces symptoms among obstructive sleep apnea syndrome patients. Sleep Breath Schlaf Atm. doi:10.1007/s11325-011-0543-8

    Google Scholar 

  12. Weaver TE, Sawyer AM (2010) Adherence to continuous positive airway pressure treatment for obstructive sleep apnoea: implications for future interventions. Indian J Med Res 131:245–258

    PubMed Central  PubMed  Google Scholar 

  13. Ip S, D’Ambrosio C, Patel K et al (2012) Auto-titrating versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: a systematic review with meta-analyses. Syst Rev 1:20. doi:10.1186/2046-4053-1-20

    Article  PubMed Central  PubMed  Google Scholar 

  14. Haniffa M, Lasserson TJ, Smith I (2004) Interventions to improve compliance with continuous positive airway pressure for obstructive sleep apnoea. Cochrane Database Syst Rev Online. doi:10.1002/14651858.CD003531.pub2, CD003531

    Google Scholar 

  15. Xu T, Li T, Wei D et al (2011) Effect of automatic versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: an up-to-date meta-analysis. Sleep Breath Schlaf Atm. doi:10.1007/s11325-011-0626-6

    Google Scholar 

  16. Ayas NT, Patel SR, Malhotra A et al (2004) Auto-titrating versus standard continuous positive airway pressure for the treatment of obstructive sleep apnea: results of a meta-analysis. Sleep 27:249–253

    PubMed  Google Scholar 

  17. Hertegonne K, Bauters F (2010) The value of auto-adjustable CPAP devices in pressure titration and treatment of patients with obstructive sleep apnea syndrome. Sleep Med Rev 14:115–119. doi:10.1016/j.smrv.2009.07.001

    Article  PubMed  Google Scholar 

  18. Patruno V, Aiolfi S, Costantino G et al (2007) Fixed and autoadjusting continuous positive airway pressure treatments are not similar in reducing cardiovascular risk factors in patients with obstructive sleep apnea. Chest 131:1393–1399. doi:10.1378/chest.06-2192

    Article  PubMed  Google Scholar 

  19. Karasulu L, Epöztürk PO, Sökücü SN et al (2010) Improving heart rate variability in sleep apnea patients: differences in treatment with auto-titrating positive airway pressure (APAP) versus conventional CPAP. Lung 188:315–320. doi:10.1007/s00408-010-9237-4

    Article  PubMed  Google Scholar 

  20. Masa JF, Jiménez A, Durán J et al (2004) Alternative methods of titrating continuous positive airway pressure: a large multicenter study. Am J Respir Crit Care Med 170:1218–1224. doi:10.1164/rccm.200312-1787OC

    Article  PubMed  Google Scholar 

  21. Denotti AL, Wong KKH, Dungan GC 2nd et al (2011) Residual sleep disordered breathing during auto-titrating positive airway pressure therapy. Eur Respir J Off J Eur Soc Clin Respir Physiol. doi:10.1183/09031936.00093811

    Google Scholar 

  22. Prasad B, Carley DW, Herdegen JJ (2010) Continuous positive airway pressure device-based automated detection of obstructive sleep apnea compared to standard laboratory polysomnography. Sleep Breath Schlaf Atm 14:101–107. doi:10.1007/s11325-009-0285-z

    Article  Google Scholar 

  23. Iasemidis LD (2011) Seizure prediction and its applications. Neurosurg Clin N Am 22:489–506. doi:10.1016/j.nec.2011.07.004

    Article  PubMed Central  PubMed  Google Scholar 

  24. Moody G, Lehman L (2009) Predicting acute hypotensive episodes: The 10th Annual PhysioNet/Computers in Cardiology Challenge. Comput Cardiol 36:541–544

    PubMed Central  PubMed  Google Scholar 

  25. Moody G, Goldberger A, McClennen S, Swiryn S (2001) Predicting the onset of paroxysmal atrial fibrillation: the Computers in Cardiology Challenge 2001. Comput Cardiol 2001:pp 113–pp 116

    Google Scholar 

  26. Shukla P, Basu I, Graupe D, et al (2012) A neural network-based design of an on-off adaptive control for Deep Brain Stimulation in movement disorders. 2012 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC. pp 4140–4143

  27. Waxman JA, Graupe D, Carley DW (2010) Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural network. Am J Respir Crit Care Med 181:727–733. doi:10.1164/rccm.200907-1146OC

    Article  PubMed  Google Scholar 

  28. Prasad B, Radulovacki M, Olopade C et al (2010) Prospective trial of efficacy and safety of ondansetron and fluoxetine in patients with obstructive sleep apnea syndrome. Sleep 33:982–989

    PubMed Central  PubMed  Google Scholar 

  29. Iber C, Medicine AA of S (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine

  30. Chervin RD, Burns JW, Ruzicka DL (2005) Electroencephalographic changes during respiratory cycles predict sleepiness in sleep apnea. Am J Respir Crit Care Med 171:652–658. doi:10.1164/rccm.200408-1056OC

    Article  PubMed  Google Scholar 

  31. Dingli K, Assimakopoulos T, Wraith PK et al (2003) Spectral oscillations of RR intervals in sleep apnoea/hypopnoea syndrome patients. Eur Respir J Off J Eur Soc Clin Respir Physiol 22:943–950

    CAS  Google Scholar 

  32. Jurysta F, Lanquart J-P, van de Borne P et al (2006) The link between cardiac autonomic activity and sleep delta power is altered in men with sleep apnea-hypopnea syndrome. Am J Physiol Regul Integr Comp Physiol 291:R1165–R1171. doi:10.1152/ajpregu.00787.2005

    Article  CAS  PubMed  Google Scholar 

  33. Series F, Marc I (1999) Nasal pressure recording in the diagnosis of sleep apnoea hypopnoea syndrome. Thorax 54:506–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Choi SJ, Ahn HJ, Yang MK et al (2010) Comparison of desaturation and resaturation response times between transmission and reflectance pulse oximeters. Acta Anaesthesiol Scand 54:212–217. doi:10.1111/j.1399-6576.2009.02101.x

    Article  CAS  PubMed  Google Scholar 

  35. Graps A (1995) An introduction to wavelets. Comput Sci Eng IEEE 2:50–61. doi:10.1109/99.388960

    Article  Google Scholar 

  36. Baldi P, Brunak S, Chauvin Y et al (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinforma Oxf Engl 16:412–424

    Article  CAS  Google Scholar 

  37. Penzel T, McNames J, Murray A et al (2002) Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput 40:402–407

    Article  CAS  PubMed  Google Scholar 

  38. Dagum P, Galper A (1993) Forecasting sleep apnea with dynamic network models. Ninth Conf. Uncertain. Artif. Intell

  39. Bock J, Gough DA (1998) Toward prediction of physiological state signals in sleep apnea. Biomed Eng IEEE Trans On 45:1332–1341. doi:10.1109/10.725330

    Article  CAS  Google Scholar 

  40. Williamson JR, Bliss DW, Paydarfar D Forecasting respiratory collapse: theory and practice for averting life-threatening infant apneas. Respir Physiol Neurobiol. doi: 10.1016/j.resp.2013.05.034

  41. Badr MS, Toiber F, Skatrud JB (1985) Dempsey J (1995) Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol Bethesda Md 78:1806–1815

    Google Scholar 

  42. Gould GA, Whyte KF, Rhind GB et al (1988) The sleep hypopnea syndrome. Am Rev Respir Dis 137:895–898

    Article  CAS  PubMed  Google Scholar 

  43. Kezirian EJ, Goding GS Jr, Malhotra A et al (2013) Hypoglossal nerve stimulation improves obstructive sleep apnoea: 12-month outcomes. J Sleep Res. doi:10.1111/jsr.12079

    PubMed Central  PubMed  Google Scholar 

  44. Zaidi FN, Meadows P, Jacobowitz O, Davidson TM (2013) Tongue anatomy and physiology, the scientific basis for a novel targeted neurostimulation system designed for the treatment of obstructive sleep apnea. Neuromodulation J Int Neuromodulation Soc 16:376–386. doi:10.1111/j.1525-1403.2012.00514.x

    Article  Google Scholar 

  45. Eckert DJ, White DP, Jordan AS et al (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188:996–1004. doi:10.1164/rccm.201303-0448OC

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kapur VK (2010) Obstructive sleep apnea: diagnosis, epidemiology, and economics. Respir Care 55:1155–1167

    PubMed  Google Scholar 

  47. Young T, Shahar E, Nieto FJ et al (2002) Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study. Arch Intern Med 162:893–900

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding of this study was provided by the BTG International, NIH Award F30 HL097403, and NIH Grant TL1RR029877. The funding sources had no role in data collection, analysis, or the decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Waxman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 182 kb)

ESM 2

(PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waxman, J.A., Graupe, D. & Carley, D.W. Real-time prediction of disordered breathing events in people with obstructive sleep apnea. Sleep Breath 19, 205–212 (2015). https://doi.org/10.1007/s11325-014-0993-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-0993-x

Keywords

Navigation