Skip to main content

Advertisement

Log in

Evaluation and Management of Adults with Obstructive Sleep Apnea Syndrome

  • STATE OF THE ART REVIEW
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea syndrome (OSAS) is a common and underdiagnosed medical condition characterized by recurrent sleep-dependent pauses and reductions in airflow. While a narrow, collapsible oropharynx plays a central role in the pathophysiology of OSAS, there are other equally important nonanatomic factors including sleep-stage dependent muscle tone, arousal threshold, and loop gain that drive obstructive apneas and hypopneas. Through mechanisms of intermittent hypoxemia, arousal-related sleep fragmentation, and intrathoracic pressure changes, OSAS impacts multiple organ systems. Risk factors for OSAS include obesity, male sex, age, specific craniofacial features, and ethnicity. The prevalence of OSAS is rising due to increasing obesity rates and improved sensitivity in the tools used for diagnosis. Validated questionnaires have an important but limited role in the identification of patients that would benefit from formal testing for OSA. While an in-laboratory polysomnography remains the gold standard for diagnosis, the widespread availability and accuracy of home sleep apnea testing modalities increase access and ease of OSAS diagnosis for many patients. In adults, the most common treatment involves the application of positive airway pressure (PAP), but compliance continues to be a challenge. Alternative treatments including mandibular advancement device, hypoglossal nerve stimulator, positional therapies, and surgical options coupled with weight loss and exercise offer possibilities of an individualized personal approach to OSAS. Treatment of symptomatic patients with OSAS has been found to be beneficial with regard to sleep-related quality of life, sleepiness, and motor vehicle accidents. The benefit of treating asymptomatic OSA patients, particularly with regard to cardiovascular outcomes, is controversial and more data are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OSAS:

Obstructive sleep apnea syndrome

AASM:

American Academy of Sleep Medicine

AHI:

Apnea–hypopnea index

BMI:

Body mass index

REM:

Rapid eye movement

NREM:

Non-REM

PAP:

Positive airway pressure

PSG:

Polysomnography

HST:

Home sleep test

OCST:

Out-of-center sleep testing

MMA:

Maxillomandibular advancement

UPPP:

Uvulopharyngopalatoplasty

References

  1. American Academy of Sleep Medicine (2014) International classification of sleep disorders, 3rd edn. American Academy of Sleep Medicine, Darien, IL

  2. (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22(5):667–689

  3. Edwards BA et al (2019) More than the sum of the respiratory events: personalized medicine approaches for obstructive sleep apnea. Am J Respir Crit Care Med 200(6):691–703

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pevernagie DA et al (2020) On the rise and fall of the apnea-hypopnea index: a historical review and critical appraisal. J Sleep Res 29(4):13066

    Article  Google Scholar 

  5. Young T et al (1997) Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women. Sleep 20(9):705–706

    Article  CAS  PubMed  Google Scholar 

  6. Kapur V et al (2002) Underdiagnosis of sleep apnea syndrome in US communities. Sleep Breath 6(2):49–54

    Article  PubMed  Google Scholar 

  7. Peppard PE et al (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heinzer R et al (2015) Prevalence of sleep-disordered breathing in the general population: the hypnoLaus study. Lancet Respir Med 3(4):310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Senaratna CV et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81

    Article  PubMed  Google Scholar 

  10. Dempsey JA et al (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davidson TM (2003) The great leap forward: the anatomic basis for the acquisition of speech and obstructive sleep apnea. Sleep Med 4(3):185–194

    Article  PubMed  Google Scholar 

  12. Grace KP, Hughes SW, Horner RL (2013) Identification of the mechanism mediating genioglossus muscle suppression in REM sleep. Am J Respir Crit Care Med 187(3):311–319

    Article  PubMed  Google Scholar 

  13. Eckert DJ et al (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188(8):996–1004

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loewen AH et al (2011) Response of genioglossus muscle to increasing chemical drive in sleeping obstructive apnea patients. Sleep 34(8):1061–1073

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sands SA et al (2014) Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 190(8):930–937

    Article  PubMed  PubMed Central  Google Scholar 

  16. Carberry JC, Amatoury J, Eckert DJ (2018) Personalized management approach for OSA. Chest 153(3):744–755

    Article  PubMed  Google Scholar 

  17. Eckert DJ, Younes MK (2014) Arousal from sleep: implications for obstructive sleep apnea pathogenesis and treatment. J Appl Physiol 116(3):302–313

    Article  CAS  PubMed  Google Scholar 

  18. Wang SH et al (2020) Effect of weight loss on upper airway anatomy and the apnea-hypopnea index. The importance of tongue fat. Am J Respir Crit Care Med 201(6):718–727

    Article  PubMed  PubMed Central  Google Scholar 

  19. Joosten SA, Hamilton GS, Naughton MT (2017) Impact of weight loss management in OSA. Chest 152(1):194–203

    Article  PubMed  Google Scholar 

  20. Stadler DL et al (2009) Abdominal compression increases upper airway collapsibility during sleep in obese male obstructive sleep apnea patients. Sleep 32(12):1579–1587

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tishler PV et al (2003) Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA 289(17):2230–2237

    Article  PubMed  Google Scholar 

  22. Peppard PE et al (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284(23):3015–3021

    Article  CAS  PubMed  Google Scholar 

  23. Newman AB et al (2005) Progression and regression of sleep-disordered breathing with changes in weight: the sleep heart health study. Arch Intern Med 165(20):2408–2413

    Article  PubMed  Google Scholar 

  24. Joosten SA et al (2017) Improvement in obstructive sleep apnea With weight loss is dependent on body position during sleep. Sleep 40(5):zsx047

    Article  Google Scholar 

  25. Theorell-Haglöw J et al (2018) Gender differences in obstructive sleep apnoea, insomnia and restless legs syndrome in adults—what do we know? A clinical update. Sleep Med Rev 38:28–38

    Article  PubMed  Google Scholar 

  26. Mohsenin V (2003) Effects of gender on upper airway collapsibility and severity of obstructive sleep apnea. Sleep Med 4(6):523–529

    Article  PubMed  Google Scholar 

  27. Kirkness JP et al (1985) Contribution of male sex, age, and obesity to mechanical instability of the upper airway during sleep. J Appl Physiol 104(6):1618–1624

    Article  Google Scholar 

  28. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383(9918):736–747

    Article  PubMed  Google Scholar 

  29. Whittle AT et al (1999) Neck soft tissue and fat distribution: comparison between normal men and women by magnetic resonance imaging. Thorax 54(4):323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laouafa S et al (2017) Estradiol protects against cardiorespiratory dysfunctions and oxidative stress in intermittent hypoxia. Sleep 40(8):zsx104

    Article  Google Scholar 

  31. Launois SH, Pépin JL, Lévy P (2007) Sleep apnea in the elderly: a specific entity? Sleep Med Rev 11(2):87–97

    Article  PubMed  Google Scholar 

  32. Edwards BA et al (2010) Aging and sleep: physiology and pathophysiology. Semin Respir Crit Care Med 31(5):618–633

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neelapu BC et al (2017) Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: a systematic review and meta-analysis of cephalometric studies. Sleep Med Rev 31:79–90

    Article  PubMed  Google Scholar 

  34. Lee RW et al (2010) Relationship between surface facial dimensions and upper airway structures in obstructive sleep apnea. Sleep 33(9):1249–1254

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eastwood P et al (2020) Predicting sleep apnea from three-dimensional face photography. J Clin Sleep Med 16(4):493–502

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sutherland K et al (2019) A global comparison of anatomic risk factors and their relationship to obstructive sleep apnea severity in clinical samples. J Clin Sleep Med 15(4):629–639

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bibbins-Domingo K et al (2017) Screening for obstructive sleep apnea in adults: US preventive services task force recommendation statement. JAMA 317(4):407–414

    Article  PubMed  Google Scholar 

  38. Aurora RN, Quan SF (2016) Quality measure for screening for adult obstructive sleep apnea by primary care physicians. J Clin Sleep Med 12(8):1185–1187

    Article  PubMed  PubMed Central  Google Scholar 

  39. Epstein LJ et al (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5(3):263–276

    Article  PubMed  Google Scholar 

  40. Chung F, Abdullah HR, Liao P (2016) STOP-bang questionnaire: a practical approach to screen for obstructive sleep apnea. Chest 149(3):631–638

    Article  PubMed  Google Scholar 

  41. Netzer NC et al (1999) Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med 131(7):485–491

    Article  CAS  PubMed  Google Scholar 

  42. Johns MW (1991) A new method for measuring daytime sleepiness: the epworth sleepiness scale. Sleep 14(6):540–545

    Article  CAS  PubMed  Google Scholar 

  43. Chiu HY et al (2017) Diagnostic accuracy of the Berlin questionnaire, STOP-BANG, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: a bivariate meta-analysis. Sleep Med Rev 36:57–70

    Article  PubMed  Google Scholar 

  44. Gamaldo C et al (2018) Evaluation of clinical tools to screen and assess for obstructive sleep apnea. J Clin Sleep Med 14(7):1239

    Article  Google Scholar 

  45. Kapur VK et al (2005) Sleepiness in patients with moderate to severe sleep-disordered breathing. Sleep 28(4):472–477

    Article  PubMed  Google Scholar 

  46. Chervin RD (2000) Sleepiness, fatigue, tiredness, and lack of energy in obstructive sleep apnea. Chest 118(2):372–379

    Article  CAS  PubMed  Google Scholar 

  47. Myers KA, Mrkobrada M, Simel DL (2013) Does this patient have obstructive sleep apnea? The rational clinical examination systematic review. JAMA 310(7):731–741

    Article  CAS  PubMed  Google Scholar 

  48. Lin CM, Davidson TM, Ancoli-Israel S (2008) Gender differences in obstructive sleep apnea and treatment implications. Sleep Med Rev 12(6):481–496

    Article  PubMed  PubMed Central  Google Scholar 

  49. Westreich R et al (2019) The presence of snoring as well as its intensity Is underreported by women. J Clin Sleep Med 15(3):471–476

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nigro CA et al (2018) The influence of gender on symptoms associated with obstructive sleep apnea. Sleep Breath 22(3):683–693

    Article  PubMed  Google Scholar 

  51. Valipour A et al (2007) Gender-related differences in symptoms of patients with suspected breathing disorders in sleep: a clinical population study using the sleep disorders questionnaire. Sleep 30(3):312–319

    Article  PubMed  Google Scholar 

  52. Kapur VK et al (2017) Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American academy of sleep medicine clinical practice guideline. J Clin Sleep Med 13(3):479–504

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pereira EJ et al (2013) Comparing a combination of validated questionnaires and level III portable monitor with polysomnography to diagnose and exclude sleep apnea. J Clin Sleep Med 9(12):1259–1266

    Article  PubMed  PubMed Central  Google Scholar 

  54. American Academy of Sleep Medicine (2020) Rules, terminology and technical specifications. In: Berry R (ed) The AASM manual for the scoring of sleep and associated events. American Academy of Sleep Medicine, Darien, IL

  55. Zeidler MR et al (2015) Predictors of obstructive sleep apnea on polysomnography after a technically inadequate or normal home sleep test. J Clin Sleep Med 11(11):1313–1318

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kundel V, Shah N (2017) Impact of portable sleep testing. Sleep Med Clin 12(1):137–147

    Article  PubMed  PubMed Central  Google Scholar 

  57. Collop NA et al (2007) Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients portable monitoring task force of the American Academy of Sleep Medicine. J Clin Sleep Med 3(7):737–747

    Article  PubMed  Google Scholar 

  58. Guerrero A et al (2014) Management of sleep apnea without high pretest probability or with comorbidities by three nights of portable sleep monitoring. Sleep 37(8):1363–1373

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aurora RN, Patil SP, Punjabi NM (2018) Portable sleep monitoring for diagnosing sleep apnea in hospitalized patients with heart failure. Chest 154(1):91–98

    Article  PubMed  PubMed Central  Google Scholar 

  60. Araújo I et al (2018) Diagnosis of sleep apnea in patients with stable chronic heart failure using a portable sleep test diagnostic device. Sleep Breath 22(3):749–755

    Article  PubMed  Google Scholar 

  61. Jen R et al (2020) Accuracy of watchPAT for the diagnosis of obstructive sleep apnea in patients with chronic obstructive pulmonary disease. Copd 17(1):34–39

    Article  CAS  PubMed  Google Scholar 

  62. Chang Y et al (2019) Validation of the Nox-T3 portable monitor for diagnosis of obstructive sleep apnea in patients with chronic obstructive pulmonary disease. J Clin Sleep Med 15(4):587–596

    Article  PubMed  PubMed Central  Google Scholar 

  63. Oliveira MG et al (2015) Diagnostic accuracy of home-based monitoring system in morbidly obese patients with high risk for sleep apnea. Obes Surg 25(5):845–851

    Article  PubMed  Google Scholar 

  64. Bianchi MT, Goparaju B (2017) Potential underestimation of sleep apnea severity by at-home kits: rescoring in-laboratory polysomnography without sleep staging. J Clin Sleep Med 13(4):551–555

    Article  PubMed  PubMed Central  Google Scholar 

  65. El Shayeb M et al (2014) Diagnostic accuracy of level 3 portable sleep tests versus level 1 polysomnography for sleep-disordered breathing: a systematic review and meta-analysis. CMAJ 186(1):E25–E51

    Article  PubMed  PubMed Central  Google Scholar 

  66. Punjabi NM et al (2020) Variability and misclassification of sleep apnea severity based on multi-night testing. Chest 158(1):365–373

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ioachimescu OC et al (2020) Performance of peripheral arterial tonometry-based testing for the diagnosis of obstructive sleep apnea in a large sleep clinic cohort. J Clin Sleep Med 16(10):1663–1674

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tauman R et al (2020) Watch-PAT is useful in the diagnosis of sleep apnea in patients with atrial fibrillation. Nat Sci Sleep 12:1115–1121

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang Z et al (2020) A comparison of automated and manual sleep staging and respiratory event recognition in a portable sleep diagnostic device with in-lab sleep study. J Clin Sleep Med 16(4):563–573

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zinchuk A, Yaggi HK (2020) Phenotypic subtypes of OSA: a challenge and opportunity for precision medicine. Chest 157(2):403–420

    Article  PubMed  Google Scholar 

  71. Martinez-Garcia MA et al (2019) Precision medicine in obstructive sleep apnoea. Lancet Respir Med 7(5):456–464

    Article  PubMed  Google Scholar 

  72. Morgenthaler TI et al (2008) Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine report. Sleep 31(1):141–147

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mulgrew AT et al (2007) Diagnosis and initial management of obstructive sleep apnea without polysomnography: a randomized validation study. Ann Intern Med 146(3):157–166

    Article  PubMed  Google Scholar 

  74. Patil SP et al (2019) Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 15(2):335–343

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schwab RJ et al (2013) An official American thoracic society statement continuous positive airway pressure adherence tracking systems The optimal monitoring strategies and outcome measures in adults. Am J Respir Crit Care Med 188(5):613–620

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rotenberg BW, Murariu D, Pang KP (2016) Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg 45(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  77. Masa JF, Corral-Peñafiel J (2014) Should use of 4 hours continuous positive airway pressure per night be considered acceptable compliance? Eur Respir J 44(5):1119–1120

    Article  PubMed  Google Scholar 

  78. Ballard RD, Gay PC, Strollo PJ (2007) Interventions to improve compliance in sleep apnea patients previously non-compliant with continuous positive airway pressure. J Clin Sleep Med 3(7):706–712

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bakker JP et al (2019) Adherence to CPAP: what should we be aiming for, and how can we get there? Chest 155(6):1272–1287

    Article  PubMed  Google Scholar 

  80. Benjafield AV et al (2019) Compliance after switching from CPAP to bilevel for patients with non-compliant OSA: big data analysis. BMJ Open Respir Res 6(1):e000380

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bouloukaki I et al (2014) Intensive versus standard follow-up to improve continuous positive airway pressure compliance. Eur Respir J 44(5):1262–1274

    Article  PubMed  Google Scholar 

  82. Kushida CA et al (2006) Practice parameters for the treatment of snoring and Obstructive sleep apnea with oral appliances: an update for 2005. Sleep 29(2):240–243

    Article  PubMed  Google Scholar 

  83. Marklund M, Verbraecken J, Randerath W (2012) Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device therapy. Eur Respir J 39(5):1241–1247

    Article  PubMed  Google Scholar 

  84. Ng AT et al (2003) Effect of oral appliance therapy on upper airway collapsibility in obstructive sleep apnea. Am J Respir Crit Care Med 168(2):238–241

    Article  PubMed  Google Scholar 

  85. Barnes M et al (2004) Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am J Respir Crit Care Med 170(6):656–664

    Article  PubMed  Google Scholar 

  86. Sutherland K, Cistulli PA (2019) Oral appliance therapy for obstructive sleep apnoea: state of the art. J Clin Med 8(12):2121

    Article  Google Scholar 

  87. Johal A et al (2017) Ready-made versus custom-made mandibular repositioning devices in sleep apnea: a randomized clinical trial. J Clin Sleep Med 13(2):175–182

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sutherland K et al (2015) Oral appliance treatment response and polysomnographic phenotypes of obstructive sleep apnea. J Clin Sleep Med 11(8):861–868

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bratton DJ et al (2015) CPAP vs mandibular advancement devices and blood pressure in patients with obstructive sleep apnea: a systematic review and meta-analysis. JAMA 314(21):2280–2293

    Article  CAS  PubMed  Google Scholar 

  90. Ramar K et al (2015) Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med 11(7):773–827

    Article  PubMed  PubMed Central  Google Scholar 

  91. Strollo PJ Jr et al (2014) Upper-airway stimulation for obstructive sleep apnea. N Engl J Med 370(2):139–149

    Article  CAS  PubMed  Google Scholar 

  92. Kent DT et al (2019) Evaluation of hypoglossal nerve stimulation treatment in obstructive sleep apnea. JAMA Otolaryngol Head Neck Surg 145(11):1044–1052

    Article  PubMed Central  PubMed  Google Scholar 

  93. Smith DF, Cohen AP, Ishman SL (2015) Surgical management of OSA in adults. Chest 147(6):1681–1690

    Article  PubMed  Google Scholar 

  94. Elshaug AG et al (2007) Redefining success in airway surgery for obstructive sleep apnea: a meta analysis and synthesis of the evidence. Sleep 30(4):461–467

    Article  PubMed  Google Scholar 

  95. Zaghi S et al (2016) Maxillomandibular advancement for treatment of obstructive sleep apnea: a meta-analysis. JAMA Otolaryngol Head Neck Surg 142(1):58–66

    Article  PubMed  Google Scholar 

  96. MacKay S et al (2020) Effect of multilevel upper airway surgery vs medical management on the apnea-hypopnea index and patient-reported daytime sleepiness among patients with moderate or severe obstructive sleep apnea: the SAMS randomized clinical trial. JAMA 324(12):1168–1179

    Article  PubMed  PubMed Central  Google Scholar 

  97. Halle TR et al (2017) Surgical treatment of OSA on cardiovascular outcomes: a systematic review. Chest 152(6):1214–1229

    Article  PubMed  Google Scholar 

  98. Cartwright RD (1984) Effect of sleep position on sleep apnea severity. Sleep 7(2):110–114

    Article  CAS  PubMed  Google Scholar 

  99. Ravesloot MJL et al (2017) Efficacy of the new generation of devices for positional therapy for patients with positional obstructive sleep apnea: a systematic review of the literature and meta-analysis. J Clin Sleep Med 13(6):813–824

    Article  PubMed  PubMed Central  Google Scholar 

  100. Oksenberg A et al (2020) Prevalence and characteristics of positional obstructive sleep apnea (POSA) in patients with severe OSA. Sleep Breath 24(2):551–559

    Article  PubMed  Google Scholar 

  101. Kastoer C et al (2018) Comparison of upper airway collapse patterns and its clinical significance: drug-induced sleep endoscopy in patients without obstructive sleep apnea, positional and non-positional obstructive sleep apnea. Sleep Breath 22(4):939–948

    Article  CAS  PubMed  Google Scholar 

  102. Joosten SA et al (2015) Evaluation of the role of lung volume and airway size and shape in supine-predominant obstructive sleep apnoea patients. Respirology 20(5):819–827

    Article  PubMed  Google Scholar 

  103. Joosten SA et al (2017) Dynamic loop gain increases upon adopting the supine body position during sleep in patients with obstructive sleep apnoea. Respirology 22(8):1662–1669

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bignold JJ et al (2009) Poor long-term patient compliance with the tennis ball technique for treating positional obstructive sleep apnea. J Clin Sleep Med 5(5):428–430

    Article  PubMed  PubMed Central  Google Scholar 

  105. Eijsvogel MM et al (2015) Sleep position trainer versus tennis ball technique in positional obstructive sleep apnea syndrome. J Clin Sleep Med 11(2):139–147

    Article  PubMed  PubMed Central  Google Scholar 

  106. Qaseem A et al (2013) Management of obstructive sleep apnea in adults: a clinical practice guideline from the American college of physicians. Ann Intern Med 159(7):471–483

    PubMed  Google Scholar 

  107. Morgenthaler TI et al (2006) Practice parameters for the medical therapy of obstructive sleep apnea. Sleep 29(8):1031–1035

    Article  PubMed  Google Scholar 

  108. Aiello KD et al (2016) Effect of exercise training on sleep apnea: a systematic review and meta-analysis. Respir Med 116:85–92

    Article  PubMed  Google Scholar 

  109. Servantes DM et al (2018) Effects of exercise training and CPAP in patients with heart failure and OSA: a preliminary study. Chest 154(4):808–817

    Article  PubMed  Google Scholar 

  110. Camacho M et al (2015) Myofunctional therapy to treat obstructive sleep apnea: a systematic review and meta-analysis. Sleep 38(5):669–675

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kezirian EJ et al (2020) Making sense of the noise: toward rational treatment for obstructive sleep apnea. Am J Respir Crit Care Med 202(11):1503–1508

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gaisl T et al (2019) Efficacy of pharmacotherapy for OSA in adults: a systematic review and network meta-analysis. Sleep Med Rev 46:74–86

    Article  PubMed  Google Scholar 

  113. Taranto-Montemurro L et al (2019) The combination of atomoxetine and oxybutynin greatly reduces obstructive sleep apnea severity a randomized, placebo-controlled, double-blind crossover trial. Am J Respir Crit Care Med 199(10):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Carley DW et al (2018) Pharmacotherapy of apnea by cannabimimetic enhancement, the PACE clinical trial: effects of dronabinol in obstructive sleep apnea. Sleep 41(1):zsx184

    Article  Google Scholar 

  115. Peppard PE, Hagen EW (2018) The last 25 years of obstructive sleep apnea epidemiology-and the next 25? Am J Respir Crit Care Med 197(3):310–312

    Article  PubMed  Google Scholar 

  116. McNicholas WT et al (2016) Mild obstructive sleep apnoea: clinical relevance and approaches to management. Lancet Respir Med 4(10):826–834

    Article  PubMed  Google Scholar 

  117. Budhiraja R et al (2016) The role of big data in the management of sleep-disordered breathing. Sleep Med Clin 11(2):241–255

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kendzerska T et al (2014) Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev 18(1):49–59

    Article  PubMed  Google Scholar 

  119. Buchner NJ et al (2007) Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk. Am J Respir Crit Care Med 176(12):1274–1280

    Article  PubMed  Google Scholar 

  120. Marin JM et al (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053

    Article  PubMed  Google Scholar 

  121. McEvoy RD et al (2016) CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med 375(10):919–931

    Article  PubMed  Google Scholar 

  122. Barbé F et al (2012) Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA 307(20):2161–2168

    Article  PubMed  Google Scholar 

  123. Peker Y et al (2016) Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am J Respir Crit Care Med 194(5):613–620

    Article  CAS  PubMed  Google Scholar 

  124. Sánchez-de-la-Torre M et al (2020) Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med 8(4):359–367

    Article  PubMed  Google Scholar 

  125. Li Y et al (2014) Self-evaluated and close relative-evaluated epworth sleepiness scale vs multiple sleep latency test in patients with obstructive sleep apnea. J Clin Sleep Med 10(2):171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Campbell AJ, Neill AM, Scott DAR (2018) Clinical reproducibility of the epworth sleepiness scale for patients with suspected sleep apnea. J Clin Sleep Med 14(5):791–795

    Article  PubMed  PubMed Central  Google Scholar 

  127. Miletin MS, Hanly PJ (2003) Measurement properties of the epworth sleepiness scale. Sleep Med 4(3):195–199

    Article  PubMed  Google Scholar 

  128. Patil SP et al (2019) Treatment of adult obstructive sleep apnea with positive airway pressure: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med 15(2):301–334

    Article  PubMed  PubMed Central  Google Scholar 

  129. Feldstein CA (2016) Blood pressure effects of CPAP in nonresistant and resistant hypertension associated with OSA: a systematic review of randomized clinical trials. Clin Exp Hypertens 38(4):337–346

    Article  CAS  PubMed  Google Scholar 

  130. Crinion SJ et al (2019) Nondipping nocturnal blood pressure predicts sleep apnea in patients with hypertension. J Clin Sleep Med 15(7):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mokhlesi B et al (2019) Evaluation and management of obesity hypoventilation syndrome an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med 200(3):e6–e24

    Article  PubMed  PubMed Central  Google Scholar 

  132. Marin JM et al (2010) Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am J Respir Crit Care Med 182(3):325–331

    Article  PubMed  Google Scholar 

  133. Sundar KM et al (2020) A randomized, controlled, pilot study of CPAP for patients with chronic cough and obstructive sleep apnea. Lung 198(3):449–457

    Article  PubMed  PubMed Central  Google Scholar 

  134. Prasad B et al (2020) Asthma and obstructive sleep apnea overlap: what has the evidence taught us? Am J Respir Crit Care Med 201(11):1345–1357

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhou J et al (2016) A review of neurocognitive function and obstructive sleep apnea with or without daytime sleepiness. Sleep Med 23:99–108

    Article  PubMed  Google Scholar 

  136. Gupta MA, Simpson FC (2015) Obstructive sleep apnea and psychiatric disorders: a systematic review. J Clin Sleep Med 11(2):165–175

    Article  PubMed  PubMed Central  Google Scholar 

  137. Javaheri S et al (2017) Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol 69(7):841–858

    Article  PubMed  PubMed Central  Google Scholar 

  138. Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: a state of the art review. Chest 152(5):1070–1086

    Article  PubMed  PubMed Central  Google Scholar 

  139. Santos M, Hofmann RJ (2017) Ocular manifestations of obstructive sleep apnea. J Clin Sleep Med 13(11):1345–1348

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chaitanya A et al (2016) Glaucoma and its association with obstructive sleep apnea: a narrative review. Oman J Ophthalmol 9(3):125–134

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lin CH, Lurie RC, Lyons OD (2020) Sleep apnea and chronic kidney disease: a state-of-the-art review. Chest 157(3):673–685

    Article  CAS  PubMed  Google Scholar 

  142. Nanduri J et al (2019) Neural activation of molecular circuitry in intermittent hypoxia. Curr Opin Physiol 7:9–14

    Article  PubMed  Google Scholar 

  143. Owens RL et al (2016) Sleep and breathing and cancer? Cancer Prev Res 9(11):821–827

    Article  CAS  Google Scholar 

  144. Lavie L (2015) Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep Med Rev 20:27–45

    Article  PubMed  Google Scholar 

  145. Unnikrishnan D, Jun J, Polotsky V (2015) Inflammation in sleep apnea: an update. Rev Endocr Metab Disord 16(1):25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Luyster FS et al (2012) Sleep: a health imperative. Sleep 35(6):727–734

    Article  PubMed  PubMed Central  Google Scholar 

  147. Drager LF et al (2017) Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation 136(19):1840–1850

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nuckton TJ et al (2006) Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep 29(7):903–908

    Article  PubMed  Google Scholar 

  149. Young T et al (2002) Predictors of sleep-disordered breathing in community-dwelling adults: the sleep heart health study. Arch Intern Med 162(8):893–900

    Article  PubMed  Google Scholar 

  150. Kim AM et al (2014) Tongue fat and its relationship to obstructive sleep apnea. Sleep 37(10):1639–1648

    Article  PubMed  PubMed Central  Google Scholar 

  151. Almendros I, Gozal D (2018) Intermittent hypoxia and cancer: undesirable bed partners? Respir Physiol Neurobiol 256:79–86

    Article  CAS  PubMed  Google Scholar 

  152. Almendros I et al (2014) Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am J Respir Crit Care Med 189(5):593–601

    Article  PubMed  PubMed Central  Google Scholar 

  153. Atkeson A et al (2009) Endothelial function in obstructive sleep apnea. Prog Cardiovasc Dis 51(5):351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Eltzschig HK, Bratton DL, Colgan SP (2014) Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 13(11):852–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hunyor I, Cook KM (2018) Models of intermittent hypoxia and obstructive sleep apnea: molecular pathways and their contribution to cancer. Am J Physiol Regul Integr Comp Physiol 315(4):R669–R687

    Article  CAS  PubMed  Google Scholar 

  156. Kiernan EA et al (2016) Mechanisms of microglial activation in models of inflammation and hypoxia: implications for chronic intermittent hypoxia. J Physiol 594(6):1563–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liak C, Fitzpatrick M (2011) Coagulability in obstructive sleep apnea. Can Respir J 18(6):338–348

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu X et al (2020) The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflamm 17(1):229

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lu D et al (2018) Pulmonary surfactant-associated proteins and inflammatory factors in obstructive sleep apnea. Sleep Breath 22(1):99–107

    Article  PubMed  Google Scholar 

  160. Mesarwi OA, Loomba R, Malhotra A (2019) Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease. Am J Respir Crit Care Med 199(7):830–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nanduri J et al (2008) Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol 164(1–2):277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Parikh MP, Gupta NM, McCullough AJ (2019) Obstructive sleep apnea and the liver. Clin Liver Dis 23(2):363–382

    Article  PubMed  PubMed Central  Google Scholar 

  163. Rahangdale S et al (2011) The influence of intermittent hypoxemia on platelet activation in obese patients with obstructive sleep apnea. J Clin Sleep Med 7(2):172–178

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ryan S (2017) Adipose tissue inflammation by intermittent hypoxia: mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol 595(8):2423–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shi Z et al (2020) Attenuation of intermittent hypoxia-induced apoptosis and fibrosis in pulmonary tissues via suppression of ER stress activation. BMC Pulm Med 20(1):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. von Känel R, Dimsdale JE (2003) Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease. Chest 124(5):1956–1967

    Article  Google Scholar 

  167. Yamauchi M et al (2006) Evidence for activation of nuclear factor kappaB in obstructive sleep apnea. Sleep Breath 10(4):189–193

    Article  PubMed  Google Scholar 

  168. Yang JJ et al (2018) Toll-like receptor 4 (TLR-4) pathway promotes pulmonary inflammation in chronic intermittent hypoxia-induced obstructive sleep apnea. Med Sci Monit 24:7152–7161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna M. Sundar.

Ethics declarations

Conflict of interest

JJ Lee have no conflict of interest. KM Sundar Site PI for study of iVAPS EPAP algorithm funded by Resmed Inc.; Co-founder, Hypnoscure LLC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J., Sundar, K.M. Evaluation and Management of Adults with Obstructive Sleep Apnea Syndrome. Lung 199, 87–101 (2021). https://doi.org/10.1007/s00408-021-00426-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-021-00426-w

Keywords

Navigation