Advertisement

Metabolomics

, 15:34 | Cite as

Metabolomic richness and fingerprints of deep-sea coral species and populations

  • Samuel A. VohsenEmail author
  • Charles R. Fisher
  • Iliana B. Baums
Original Article

Abstract

Introduction

From shallow water to the deep sea, corals form the basis of diverse communities with significant ecological and economic value. These communities face many anthropogenic stressors including energy and mineral extraction activities, ocean acidification and rising sea temperatures. Corals and their symbionts produce a diverse assemblage of compounds that may help provide resilience to some of these stressors.

Objectives

We aim to characterize the metabolomic diversity of deep-sea corals in an ecological context by investigating patterns across space and phylogeny.

Methods

We applied untargeted Liquid Chromatography-Mass Spectrometry to examine the metabolomic diversity of the deep-sea coral, Callogorgia delta, across three sites in the Northern Gulf of Mexico as well as three other deep-sea corals, Stichopathes sp., Leiopathes glaberrima, and Lophelia pertusa, and a shallow-water species, Acropora palmata.

Results

Different coral species exhibited distinct metabolomic fingerprints and differences in metabolomic richness including core ions unique to each species. C. delta was generally least diverse while Lophelia pertusa was most diverse. C. delta from different sites had different metabolomic fingerprints and metabolomic richness at individual and population levels, although no sites exhibited unique core ions. Two core ions unique to C. delta were putatively identified as diterpenes and thus may possess a biologically important function.

Conclusion

Deep-sea coral species have distinct metabolomic fingerprints and exhibit high metabolomic diversity at multiple scales which may contribute to their capabilities to respond to both natural and anthropogenic stressors, including climate change.

Keywords

Callogorgia delta Diversity Rarefaction Chemotaxonomy 

Notes

Acknowledgements

We thank Andrew Patterson, Phil Smith, Imhoi Koo, and Manuel Liebeke for advice and assistance with metabolomics analysis, Dana E Williams for A. palmata collections, and the ROV Hercules pilots and crew of the EV Nautilus for making this work possible. We would also like to thank Steve Auscavitch, Carlos Gomez, Styles Smith, Alaina Weinheimer, Calum Campbell, and Meghann Devlin-Durante for assistance with collections and laboratory analyses. This is contribution no. 519 from the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium.

Author contributions

C.R.F and I.B.B conceived and designed the research. S.A.V. conducted the research and designed and conducted the analyses. S.A.V. wrote the paper with contributions from all authors.

Funding

This study was funded by a grant from the Gulf of Mexico Research Initiative awarded to the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium. Collection of Acropora palmata was funded through NSF OCE-1516763.

Compliance with ethical standards

Conflict of interest

S.A.V. declares that he has no conflict of interest. C.R.F. declares that he has no conflict of interest. I.B.B. declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. Acropora palmata was sampled under permit number FKNMS-2014-148-A2 issued by the National Oceanic and Atmospheric Administration in the Florida Keys National Marine Sanctuary. Permits are not required to sample deep-sea corals in the Gulf of Mexico. Letters of acknowledgment were obtained for our research cruise from NOAA following the Magnuson-Stevens Fishery Conservation and Management Act.

Supplementary material

11306_2019_1500_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 98 KB)
11306_2019_1500_MOESM2_ESM.xlsx (19.6 mb)
Supplementary material 2 (XLSX 20045 KB)

References

  1. Aceret, T. L., Coll, J. C., Uchio, Y., & Sammarco, P. W. (1998). Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comparative Biochemistry and Physiology Part C, 120, 121–126.Google Scholar
  2. Aceret, T. L., Sammarco, P. W., & Coll, J. C. (1995). Effects of diterpenes derived from the soft coral Sinularia flexibilis on the eggs, sperm and embryos of the scleractinian corals Montipora digitata and Acropora Tenuis. Marine Biology, 122(2), 317–323.Google Scholar
  3. Andrianasolo, E. H., Haramaty, L., Degenhardt, K., Mathew, R., White, E., Lutz, R., & Falkowski, P. (2007). Induction of apoptosis by diterpenes from the soft coral Xenia elongata. Journal of Natural Products, 70, 1551–1557.PubMedPubMedCentralGoogle Scholar
  4. Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: Plant–microbe interactions. Current Opinion in Biotechnology, 20(6), 642–650.PubMedGoogle Scholar
  5. Bay, R. A., & Palumbi, S. R. (2014). Multilocus adaptation associated with heat resistance in reef-building corals. Current Biology, 24(24), 2952–2956.PubMedGoogle Scholar
  6. Bayer, F. M., & Weinheimer, A. J. (1974). Prostaglandins from Plexaura homomalla: Ecology, utilization and conservation of a major medical marine resource. Studies in Tropical Oceanography, 12(12), 165.Google Scholar
  7. Bean, H. D., Rees, C. A., & Hill, J. E. (2016). Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates. Journal of Breath Research.  https://doi.org/10.1088/1752-7155/10/4/047102.PubMedPubMedCentralGoogle Scholar
  8. Bernhardsson, C., Robinson, K. M., Abreu, I. N., Jansson, S., Albrectsen, B. R., & Ingvarsson, P. K. (2013). Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes. Ecology Letters, 16(6), 791–798.PubMedGoogle Scholar
  9. Bonini, C., Kinnel, R. B., Li, M., Scheuer, P. J., & Djerassi, C. (1983). Minor and trace sterols in marine invertebrates 38: Isolation, structure elucidation and partial synthesis of papakusterol, a new biosynthetically unusual marine sterol with a cyclopropyl-containing side chain. Tetrahedron Letters, 24(3), 227–280.Google Scholar
  10. Bose, U., Hewavitharana, A. K., Vidgen, M. E., Ng, Y. K., Shaw, P. N., Fuerst, J. A., & Hodson, M. P. (2014). Discovering the recondite secondary metabolome spectrum of Salinispora species: A study of inter-species diversity. PLoS ONE, 9(3), 1–10.Google Scholar
  11. Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., et al. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology, 5(6), 1220–1227.Google Scholar
  12. Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R., & Schutte, V. G. W. (2009). Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology, 90(6), 1478–1484.PubMedGoogle Scholar
  13. Buhl-Mortensen, L., & Mortensen, P. B. (2005). Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In A. Freiwald & J. M. Roberts (Eds.), Cold-water corals and ecosystems (pp. 849–879). Berlin: Springer.Google Scholar
  14. Cairns, S. D., & Bayer, F. M. (2002). Studies on the western Atlantic Octocorallia (Coelenterata: Anthozoa). Part 2. The genus Callogorgia Gray, 1858. Proceedings of the Biological Society of Washington, 115, 840–867.Google Scholar
  15. Calderón-Santiago, M., Fernández-Peralbo, M. A., Priego-Capote, F., & Luque de Castro, M. D. (2016). MSCombine: A tool for merging untargeted metabolomic data from high-resolution mass spectrometry in the positive and negative ionization modes. Metabolomics.  https://doi.org/10.1007/s11306-016-0970-4.Google Scholar
  16. Cau, A., Follesa, M. C., Bo, M., Canese, S., Bellodi, A., Cannas, R., & Cau, A. (2013). Leiopathes glaberrima forest from South West Sardinia: A thousand years old nursery area for the small spotted catshark Scyliorinus canicula. Rapp. Comm. int. Mer Médit, 40(4), 717.Google Scholar
  17. Cesar, H., Burke, L., & Pet-Soede, L. (2003). The economics of worldwide coral reef degradation. Cesar Environmental Economics Consulting, 14, 23.Google Scholar
  18. Chambers, M. C., Maclean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30, 918–920.PubMedPubMedCentralGoogle Scholar
  19. Chen, C.-H., Chen, N.-F., Feng, C.-W., Cheng, S.-Y., Hung, H.-C., Tsui, K.-H., et al. (2016). A coral-derived compound improves functional recovery after spinal cord injury through its antiapoptotic and anti-inflammatory effects. Marine Drugs, 14(9), 160.PubMedCentralGoogle Scholar
  20. Costa-Lotufo, L. V., Carnevale-Neto, F., Trindade-Silva, A. E., Silva, R. R., Silva, G. G. Z., Wilke, D. V., et al. (2018). Chemical profiling of two congeneric sea mat corals along the Brazilian coast: Adaptive and functional patterns. Chemical Communications, 54(16),  https://doi.org/10.1039/C7CC08411K.
  21. Costello, M. J., McCrea, M., Freiwald, A., Lundälv, T., Jonsson, L., Bett, B. J., et al. (2005). Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In A. Freiwald & J. M. Roberts (Eds.), Cold-water corals and ecosystems (pp. 771–805). Berlin: Springer.Google Scholar
  22. DeFelice, B. C., Singh Mehta, S., Samra, S., Čajka, T., Wancewicz, B., Fahrmann, J. F., & Oliver Fiehn (2017). Mass spectral feature list optimizer (MS-FLO): A tool to minimize false positive peak reports in untargeted liquid chromatography-mass spectrometry (LC-MS) data processing. Analytical Chemistry, 89(6), 3250–3255.PubMedGoogle Scholar
  23. Farag, M. A., Porzel, A., Al-Hammady, M. A., Hegazy, M. E. F., Meyer, A., Mohamed, T. A., et al. (2016). Soft corals biodiversity in the Egyptian Red Sea: A comparative MS and NMR metabolomics approach of wild and aquarium grown species. Journal of Proteome Research, 15(4), 1274–1287.PubMedGoogle Scholar
  24. Floros, D. J., Jensen, P. R., Dorrestein, P. C., & Koyama, N. (2016). A metabolomics guided exploration of marine natural product chemical space. Metabolomics, 12(9), 1–11.Google Scholar
  25. Freiwald, A., Henrich, R., & Pätzold, J. (1997). Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark, northern Norway. In N. P. James & J. A. D. Clark (Eds.), Cool-water carbonates (pp. 141–163). Tulsa, OK: Society for Sedimentary Geology.  https://doi.org/10.2110/pec.97.56.0141.Google Scholar
  26. French, W. R., Zimmerman, L. J., Schilling, B., Gibson, B. W., Miller, C. A., Reid, R., et al. (2015). Wavelet-based peak detection and a new charge inference procedure for MS/MS implemented in ProteoWizard’s msConvert. Journal of Proteome Research, 14(2), 1299–1307.PubMedGoogle Scholar
  27. García-Matucheski, S., & Muniain, C. (2011). Predation by the nudibranch Tritonia odhneri (Opisthobranchia: Tritoniidae) on octocorals from the South Atlantic Ocean. Marine Biodiversity, 41(2), 287–297.Google Scholar
  28. Glazier, A. E., & Etter, R. J. (2014). Cryptic speciation along a bathymetric gradient. Biological Journal of the Linnean Society, 113(4), 897–913.Google Scholar
  29. Gong, L., Chen, W., Gao, Y., Liu, X., Zhang, H., Xu, C., et al. (2013). Genetic analysis of the metabolome exemplified using a rice population. Proceedings of the National Academy of Sciences of the United States, 110(50), 20320–20325.Google Scholar
  30. Guzmán, H. M., Jackson, J. B. C., & Weil, E. (1991). Short-term ecological consequences of a major oil spill on Panamian subtidal reef corals. Coral Reefs, 10, 1–12.Google Scholar
  31. He, Q., Sun, R., Liu, H., Geng, Z., Chen, D., Li, Y., et al. (2014). NMR-based metabolomic analysis of spatial variation in soft corals. Marine Drugs, 12(4), 1876–1890.PubMedPubMedCentralGoogle Scholar
  32. Henry, L. A., & Roberts, J. M. (2007). Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4), 654–672.Google Scholar
  33. Hoegh-Guldberg, O., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., & Eakin, C. M. (2008). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.Google Scholar
  34. Holopainen, J. K., & Blande, J. D. (2012). Molecular plant volatile communication. In C. López-Larrea (Ed.), Sensing in nature. Advances in experimental medicine and biology (pp. 17–31). New York: Springer.Google Scholar
  35. Hu, P., Luo, G.-A., Zhao, Z.-Z., & Jiang, Z.-H. (2005). Quantitative determination of four diterpenoids in Radix Salviae Miltiorrhizae using LC-MS-MS. Chemical & Pharmaceutical Bulletin, 53(6), 705–709.Google Scholar
  36. Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., et al. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543, 373–377.PubMedGoogle Scholar
  37. Idjadi, J. A., & Edmunds, P. J. (2006). Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Marine Ecology Progress Series, 319, 117–127.Google Scholar
  38. Imbs, A. B., Demidkova, D. A., Dautova, T. N., & Latyshev, N. A. (2009). Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (octocorallia). Lipids, 44(4), 325–335.PubMedGoogle Scholar
  39. Imre, S., Öztunc, A., Çilek, T., & Wagner, H. (1987). Isolation of caffeine from the gorgonian Paramuricea chamaeleon. Journal of Natural Products, 50(6), 1187.PubMedGoogle Scholar
  40. Januar, H., Marraskuranto, E., Patantis, G., & Chasanah, E. (2012). LC-MS metabolomic analysis of environmental stressor impacts on the metabolite diversity in Nephthea spp. Chronicles of Young Scientists, 3(1), 57.Google Scholar
  41. Jensen, A., & Frederiksen, R. (2011). The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinia) on the Faroe shelf. Sarsia, 77(1), 53–69.Google Scholar
  42. Jiang, M., Wang, C., Zhang, Y., Feng, Y., Wang, Y., & Zhu, Y. (2014). Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by 1H-NMR-based metabolomics. Phytochemical Analysis, 25(1), 50–58.PubMedGoogle Scholar
  43. Keurentjes, J. J. B., Fu, J., De Vos, R. C. H. R., Lommen, A., Hall, R. D., Bino, R. J., et al. (2006). The genetics of plant metabolism. Nature Genetics, 38(7), 842–849.PubMedGoogle Scholar
  44. Kornprobst, J.-M. (2014). Encyclopedia of marine natural products. Weinheim: Wiley-VCH.Google Scholar
  45. Krug, D., Zurek, G., Revermann, O., Vos, M., Velicer, G. J., & Müller, R. (2008). Discovering the hidden secondary metabolome of Myxococcus xanthus: A study of intraspecific diversity. Applied and Environmental Microbiology, 74(10), 3058–3068.PubMedPubMedCentralGoogle Scholar
  46. La Rivière, M., Garrabou, J., & Bally, M. (2015). Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals. Coral Reefs, 34(4), 1087–1098.Google Scholar
  47. La Rivière, M., Roumagnac, M., Garrabou, J., & Bally, M. (2013) Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea. PLoS ONE.  https://doi.org/10.1371/journal.pone.0057385.PubMedPubMedCentralGoogle Scholar
  48. Lirman, D. (1999). Reef fish communities associated with Acropora palmata: Relationship to benthic attributes. Bulletin of Marine Science, 65, 235–252.Google Scholar
  49. Macel, M., van Dam, N. M., & Keurentjes, J. J. B. (2010). Metabolomics: The chemistry between ecology and genetics. Molecular Ecology Resources, 10(4), 583–593.PubMedGoogle Scholar
  50. Maciá-Vicente, J. G., Shi, Y. N., Cheikh-Ali, Z., Grün, P., Glynou, K., Kia, S. H., et al. (2018). Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery. Environmental Microbiology, 20(3), 1253–1270.PubMedGoogle Scholar
  51. Maida, M., Carroll, A. R., & Coll, J. C. (1993). Variability of terpene content in the soft coral Sinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications. Journal of Chemical Ecology, 19(10), 2285–2296.PubMedGoogle Scholar
  52. Öhman, M. C., & Rajasuriya, A. (1998). Relationships between habitat structure and fish communities on coral. Environmental Biology of Fishes, 53, 19–31.Google Scholar
  53. Palermo, J. A., Brasco, M. F. R., Spagnuolo, C., & Seldes, A. M. (2000). Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: The first natural nitrate esters. Journal of Organic Chemistry, 65(15), 4482–4486.PubMedGoogle Scholar
  54. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., & Bay, R. A. (2014). Mechanisms of reef coral resistance to future climate change. Science, 344(6186), 895–898.PubMedGoogle Scholar
  55. Parkinson, J. E., Bartels, E., Devlin-Durante, M. K., Lustic, C., Nedimyer, K., Schopmeyer, S., et al. (2018). Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Molecular Ecology, 27(5), 1103–1119.PubMedGoogle Scholar
  56. Perez, F. F., Fontela, M., García-Ibáñez, M. I., Mercier, H., Velo, A., Lherminier, P., et al. (2018). Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature, 554(7693), 515–518.PubMedGoogle Scholar
  57. Post, A. L., Obrien, P. E., Beaman, R. J., Riddle, M. J., & De Santis, L. (2010). Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarctic Science, 22(4), 371–378.Google Scholar
  58. Quattrini, A. M., Baums, I. B., Shank, T. M., Morrison, C., & Cordes, E. E. (2015). Testing the depth-differentiation hypothesis in a deepwater octocoral. Proceedings of the Royal Society B: Biological Sciences.  https://doi.org/10.1098/rspb.2015.0008.PubMedGoogle Scholar
  59. Quattrini, A. M., Georgian, S. E., Byrnes, L., Stevens, A., Falco, R., & Cordes, E. E. (2013). Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Molecular Ecology, 22(15), 4123–4140.PubMedGoogle Scholar
  60. Quinn, R. A., Vermeij, M. J. A., Hartmann, A. C., Galtier, I., Benler, S., Haas, A., et al. (2016). Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proceedings of the Royal Society B: Biological Sciences.  https://doi.org/10.1098/rspb.2016.0469.PubMedGoogle Scholar
  61. Rasher, D. B., Stout, E. P., Engel, S., Kubanek, J., & Hay, M. E. (2011). Macroalgal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences of the United States, 108(43), 17726–17731.Google Scholar
  62. Roark, E. B., Guilderson, T. P., Dunbar, R. B., & Ingram, B. L. (2006). Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Marine Ecology Progress Series, 327, 1–14.Google Scholar
  63. Roberts, J. M., Wheeler, A. J., & Freiwald, A. (2006). Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science, 312, 543–548.PubMedGoogle Scholar
  64. Ruiz-Ramos, D. V., Saunders, M., Fisher, C. R., & Baums, I. B. (2015). Home bodies and wanderers: Sympatric lineages of the Deep-Sea black coral Leiopathes glaberrima. PLoS ONE, 10(10), 1–19.Google Scholar
  65. Sammarco, P. W., & Coll, J. C. (1990). Lack of predictability in terpenoid function Multiple roles and integration with related adaptations in soft corals. Journal of Chemical Ecology, 16(1), 273–289.PubMedGoogle Scholar
  66. Sawada, Y., Akiyama, K., Sakata, A., Kuwahara, A., Otsuki, H., Sakurai, T., et al. (2009). Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant and Cell Physiology, 50(1), 37–47.PubMedGoogle Scholar
  67. Slattery, M., Avila, C., Starmer, J., & Paul, V. J. (1998). A sequestered soft coral diterpene in the aeolid nudibranch Phyllodesmium guamensis Avila, Ballesteros, Slattery, Starmer and Paul. Journal of Experimental Marine Biology and Ecology, 226(1), 33–49.Google Scholar
  68. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.PubMedGoogle Scholar
  69. Sogin, E. M., Anderson, P., Williams, P., Chen, C. S., & Gates, R. D. (2014). Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE.  https://doi.org/10.1371/journal.pone.0111274.PubMedPubMedCentralGoogle Scholar
  70. Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P., & Gates, R. D. (2017). Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environmental Microbiology Reports, 9(3), 310–315.PubMedGoogle Scholar
  71. Son, H., Hwang, G., Kim, K., Ahn, H., Park, W., Berg, F., Van Den, et al. (2009). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural and Food Chemistry, 57, 1481–1490.PubMedGoogle Scholar
  72. Targett, N. M., Bishop, S. S., McConnell, O. J., & Yoder, J. A. (1983). Antifouling agents against the benthic marine diatom, Navicula salinicola Homarine from the gorgonians Leptogorgia virgulata and L. setacea and analogs. Journal of Chemical Ecology, 9(7), 817–829.PubMedGoogle Scholar
  73. Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K., & Schmidt, G. W. (2006). Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Marine Biology, 148(4), 711–722.Google Scholar
  74. Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., et al. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526.PubMedPubMedCentralGoogle Scholar
  75. van de Water, J. A. J. M., Allemand, D., & Ferrier-Pagès, C. (2018a). Host–microbe interactions in octocoral holobionts—Recent advances and perspectives. Microbiome, 6(1), 64.PubMedPubMedCentralGoogle Scholar
  76. van de Water, J. A. J. M., Melkonian, R., Junca, H., Voolstra, C. R., Reynaud, S., Allemand, D., & Ferrier-Pagès, C. (2016). Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Scientific Reports, 6, 1–7.Google Scholar
  77. van de Water, J. A. J. M., Melkonian, R., Voolstra, C. R., Junca, H., Beraud, E., Allemand, D., & Ferrier-Pagès, C. (2017). Comparative assessment of Mediterranean Gorgonian-associated microbial communities reveals conserved core and locally variant bacteria. Microbial Ecology, 73(2), 466–478.PubMedGoogle Scholar
  78. van de Water, J. A. J. M., Voolstra, C. R., Rottier, C., Cocito, S., Peirano, A., Allemand, D., & Ferrier-Pagès, C. (2018b). Seasonal stability in the microbiomes of temperate gorgonians and the red coral Corallium rubrum across the Mediterranean Sea. Microbial Ecology, 75(1), 274–288.PubMedGoogle Scholar
  79. Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54(1), 669–689.PubMedGoogle Scholar
  80. White, H. K., Hsing, P., Cho, W., Shank, T. M., Cordes, E. E., Quattrini, A. M., et al. (2012). Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proceedings of the National Academy of Sciences of the United States, 109(50), 20303–20308.Google Scholar
  81. Yesson, C., Taylor, M. L., Tittensor, D. P., Davies, A. J., Guinotte, J., Baco, A., et al. (2012). Global habitat suitability of cold-water octocorals. Journal of Biogeography, 39(7), 1278–1292.Google Scholar
  82. Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A., & Boyle, E. E. (2006). Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Molecular Ecology, 15(3), 639–651.PubMedGoogle Scholar
  83. Zhang, C. X., Yan, S. J., Zhang, G. W., Lu, W. G., Su, J. Y., Zeng, L. M., et al. (2005). Cytotoxic diterpenoids from the soft coral Sinularia microclavata. Journal of Natural Products, 68(7), 1087–1089.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations