Skip to main content

Molecular Plant Volatile Communication

  • Chapter
Sensing in Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 739))

Abstract

Plants produce a wide array of volatile organic compounds (VOCs) which have multiple functions as internal plant hormones (e.g., ethylene, methyl jasmonate and methyl salicylate), in communication with conspecific and heterospecific plants and in communication with organisms of second (herbivores and pollinators) and third (enemies of herbivores) trophic levels. Species specific VOCs normally repel polyphagous herbivores and those specialised on other plant species, but may attract specialist herbivores and their natural enemies, which use VOCs as host location cues. Attraction of predators and parasitoids by VOCs is considered an evolved indirect defence, whereby plants are able to indirectly reduce biotic stress caused by damaging herbivores. In this chapter we review these interactions where VOCs are known to play a crucial role. We then discuss the importance of volatile communication in self and nonself detection. VOCs are suggested to appear in soil ecosystems where distinction of own roots from neighbours roots is essential to optimise root growth, but limited evidence of above-ground plant self-recognition is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoonhoven LM, van Loon JJA, Dicke M. Insect-plant biology, 2nd edition Oxford: Oxford University Press, 2005.

    Google Scholar 

  2. Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 1999; 33:23–88.

    Article  CAS  Google Scholar 

  3. Dudareva N, Negre F, Nagegowda DA et al. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 2006; 25:417–440.

    Article  CAS  Google Scholar 

  4. Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiol 2004; 135:1893–1902.

    Article  PubMed  CAS  Google Scholar 

  5. Laothawornkitkul J, Taylor JE, Paul ND et al. Biogenic volatile organic compounds in the Earth system. New Phytol 2009; 183:27–51.

    Article  PubMed  CAS  Google Scholar 

  6. Bruce TJA, Wadhams LJ, Woodcock CM. Insect host location: a volatile situation. Trends Plant Sci 2005; 10:269–274.

    Article  PubMed  CAS  Google Scholar 

  7. Holopainen JK. Multiple functions of inducible plant volatiles. Trends Plant Sci 2004; 9:529–533.

    Article  PubMed  CAS  Google Scholar 

  8. Cardoza YJ, Alborn HT, Tumlinson JH. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 2002; 28:161–174.

    Article  PubMed  CAS  Google Scholar 

  9. Walling LL. The myriad plant responses to herbivores. J Plant Growth Regul 2000; 19:195–216.

    PubMed  CAS  Google Scholar 

  10. Baldwin IT, Preston CA. The eco-physiological complexity of plant responses to insect herbivores. Planta 1999; 208:137–145.

    Article  CAS  Google Scholar 

  11. Paré PW, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 1997; 114:1161–1167.

    PubMed  Google Scholar 

  12. Pinto D, Blande JD, Nykänen R et al. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J Chem Ecol 2007; 33:683–694.

    Article  PubMed  CAS  Google Scholar 

  13. Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 1990; 250:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  14. Kappers IF, Aharoni A, van Herpen T et al. Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 2005; 309:2070–2072.

    Article  PubMed  CAS  Google Scholar 

  15. Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001; 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  16. Steidle JLM, Steppuhn A, Reinhard J. Volatile cues from different host complexes used for host location by the generalist parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). Basic Appl Ecol 2001; 2:45–51.

    Article  Google Scholar 

  17. Dicke M. Behavioural and community ecology of plants that cry for help. Plant Cell Environ 2009; 32:654–665.

    Article  PubMed  CAS  Google Scholar 

  18. Dicke M. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. J Plant Physiol 1994; 143:465–472.

    Article  CAS  Google Scholar 

  19. Gouinguene S, Alborn H, Turlings TCJ. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J Chem Ecol 2003; 29:145–162.

    Article  PubMed  CAS  Google Scholar 

  20. Baldwin IT, Schultz JC. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 1983; 221:277–279.

    Article  PubMed  CAS  Google Scholar 

  21. Farmer EE, Ryan CA. Interplant communication-airborne methyl jasmonate induces synthesis of proteinase-inhibitors in plant leaves. Proc Nat Acad Sci USA 1990; 87:7713–7716.

    Article  PubMed  CAS  Google Scholar 

  22. Karban R, Maron J. The fitness consequences of interspecific eavesdropping between plants. Ecology 2002; 83:1209–1213.

    Article  Google Scholar 

  23. Karban R, Maron J, Felton GW et al. Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 2003; 100:325–332.

    Article  Google Scholar 

  24. Karban R. Communication between sagebrush and wild tobacco in the field. Biochem Syst Ecol 2001; 29:995–1005.

    Article  CAS  Google Scholar 

  25. Karban R, Shiojiri K, Huntzinger M et al. Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. Ecology 2006; 87:922–930.

    Article  PubMed  Google Scholar 

  26. Karban R, Huntzinger M, McCall AC. The specificity of eavesdropping on sagebrush by other plants. Ecology 2004; 85:1846–1852.

    Article  Google Scholar 

  27. Tscharntke T, Thiessen S, Dolch R et al. Herbivory, induced resistance and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 2001; 29:1025–1047.

    Article  CAS  Google Scholar 

  28. Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. PNAS 2007; 104:5467–5472.

    Article  PubMed  CAS  Google Scholar 

  29. Preston CA, Laue G, Baldwin IT. Methyl jasmonate is blowing in the wind, but can it act as a plant-plant airborne signal? Biochem Syst Ecol 2001; 29:1007–1023.

    Article  CAS  Google Scholar 

  30. Preston CA, Laue G, Baldwin IT. Plant-plant signaling: application of trans-or cis-methyl jasmonate does not elicit direct defenses in native tobacco. J Chem Ecol 2004; 30:2193–2214.

    Article  PubMed  CAS  Google Scholar 

  31. Kessler A, Halitschke R, Diezel C et al. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentate and Nicotiana attenuata. Oecologia 2006; 148:280–292.

    Article  PubMed  Google Scholar 

  32. Arimura G, Ozawa R, Horiuchi J et al. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem System Ecol 2001; 29:1049–1061.

    Article  CAS  Google Scholar 

  33. Farag MA, Paré PW. C-6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 2002; 61:545–554.

    Article  PubMed  CAS  Google Scholar 

  34. Mirabella R, Rauwerda H, Struys EA et al. The Arabidopsis her1 mutant implicates GABA in (E)-2-hexenal responsiveness. Plant J 2008; 53:197–213.

    Article  PubMed  CAS  Google Scholar 

  35. Ruther J, Kleier S. Plant-plant signalling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 2005; 31:2217–2222.

    Article  PubMed  CAS  Google Scholar 

  36. Yan ZG, Wang CZ. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 2006; 67:34–42.

    Article  PubMed  CAS  Google Scholar 

  37. Frost CJ, Mescher MC, Dervinis C et al. Priming defense genes and metabolites in hybrid poplar by the green volatile cis-3-hexenyl acetate. New Phytol 2008; 180:722–734.

    Article  PubMed  CAS  Google Scholar 

  38. Kost C, Heil M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 2006; 94:619–628.

    Article  CAS  Google Scholar 

  39. Godard KA, White R, Bohlmann J. Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 2008; 69:1838–1849.

    Article  PubMed  CAS  Google Scholar 

  40. Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 1997; 385:718–721.

    Article  CAS  Google Scholar 

  41. O’Donnell PJ, Calvert C, Atzorn R et al. Ethylene as a signal mediating the wound response of tomato plants. Science 1996; 274:1914–1917.

    Article  PubMed  Google Scholar 

  42. Fall R, Karl T, Hansel A et al. Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res Atmos 1999; 104:15963–15974.

    Article  CAS  Google Scholar 

  43. Yu F, Utsumi R. Diversity, regulation and genetic manipulation of plant mono-and sesquiterpenoid biosynthesis. Cell Mol Life Sci 2009; 66:3043–3052.

    Article  PubMed  CAS  Google Scholar 

  44. Arimura G-I, Matsui K, Takabayashi J. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 2009; 50:911–923.

    Article  PubMed  CAS  Google Scholar 

  45. Pierik R, Visser EJW, de Kroon H et al. Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 2003; 26:1229–1234.

    Article  CAS  Google Scholar 

  46. Knoester M, van Loon LC, van den Heuvel J et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci USA 1998; 95:1933–1937.

    Article  PubMed  CAS  Google Scholar 

  47. Farmer EE. Surface-to-air signals. Nature 2001; 411:854–856.

    Article  PubMed  CAS  Google Scholar 

  48. Yuan JS, Himanen SJ, Holopainen JK et al. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 2009; 24:323–331.

    Article  PubMed  Google Scholar 

  49. Erb M, Lenk C, Degenhardt J et al. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci 2010: (in press) doi:10.1016/j.tplants.2009.08.006.

    Google Scholar 

  50. Choudhary DK, Johri BN, Prakash A. Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 2008; 94:595–604.

    CAS  Google Scholar 

  51. Conrath U, Pieterse CMJ, Mauch-Mani B. Priming in plant-pathogen interactions. Trends Plant Sci 2002; 7:210–216.

    Article  PubMed  CAS  Google Scholar 

  52. Newman M-A, Dow JM, Molinaro A et al. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. J Endotoxin Res 2007; 13:69–84.

    Article  PubMed  CAS  Google Scholar 

  53. Beckers GJM, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 2007; 10:425–431.

    Article  PubMed  Google Scholar 

  54. Engelberth J, Alborn HT, Schmelz EA et al. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 2004; 101:1781–1785.

    Article  PubMed  CAS  Google Scholar 

  55. Heil M, Kost C. Priming of indirect defences. Ecol Lett 2006; 9:813–817.

    Article  PubMed  Google Scholar 

  56. Choh Y, Takabayashi J. Herbivore-induced extra-floral nectar production in Lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 2006; 32:2073–2077.

    Article  PubMed  CAS  Google Scholar 

  57. Bate NJ, Rothstein SJ. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 1998; 16:561–569.

    Article  PubMed  CAS  Google Scholar 

  58. Farag MA, Fokar M, Zhang HA et al. (Z)-3-hexenol induces defense genes and downstream metabolites in maize. Planta 2005; 220:900–909.

    Article  PubMed  CAS  Google Scholar 

  59. Paschold A, Halitschke R, Baldwin IT. Using ‘mute’ plants to translate volatile signals. Plant J 2006; 45:275–291.

    Article  PubMed  CAS  Google Scholar 

  60. Arimura G-i, Ozawa R, Shimoda T et al. Herbivory-induced volatiles elicit defence genes in Lima bean leaves. Nature 2000; 406:512–515.

    Article  PubMed  CAS  Google Scholar 

  61. Dudareva N, Pichersky E. Metabolic engineering of plant volatiles. Curr Opin Biotechnol 2008; 19:181–189.

    Article  PubMed  CAS  Google Scholar 

  62. Baldwin IT, Kessler A, Halitschke R. Volatile signaling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 2002; 5:351–354.

    Article  PubMed  CAS  Google Scholar 

  63. Frost CJ, Appel HM, Carlson JE et al. Within-plant signaling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol Lett 2007; 10:490–498.

    Article  PubMed  Google Scholar 

  64. Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum and their role in inter-branch signaling. J Chem Ecol 2009; 35:163–175.

    Article  PubMed  CAS  Google Scholar 

  65. Bais HP, Park SW, Weir TL et al. How plants communicate using the underground information superhighway. Trends Plant Sci 2004; 9:26–32.

    Article  PubMed  CAS  Google Scholar 

  66. Jarchow ME, Cook BJ. Allelopathy as a mechanism for the invasion of Typha angustifolia. Plant Ecology 2009; 204(1):113–124.

    Article  Google Scholar 

  67. Falik O, Reides P, Gersani M et al. Root navigation by self inhibition. Plant Cell Environ 2005; 28:562–569.

    Article  Google Scholar 

  68. Ibrahim MA, Nissinen A, Prozherina N et al. The influence of exogenous monoterpene treatment and elevated temperature on growth, physiology, chemical content and headspace volatiles of two carrot cultivars (Daucus carota L.). Environ Exp Bot 2006; 56:95–107.

    Article  CAS  Google Scholar 

  69. Rasmann S, Kollner TG, Degenhardt J et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005; 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  70. Chen F, Al-Ahmad H, Joyce B et al. Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol Biochem 2009; 47:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  71. Guerrieri E, Poppy GM, Powell W et al. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 2002; 28:1703–1715.

    Article  PubMed  CAS  Google Scholar 

  72. Smith TM, Smith RL. Elements of Ecology. 7th edition. San Francisco: Benjamin Cummings, 2009.

    Google Scholar 

  73. Mahall BE, Callaway RM. Root communication among desert shrubs. Proc Natl Acad Sci USA 1991; 88:874–876.

    Article  PubMed  CAS  Google Scholar 

  74. Gruntman M, Novoplansky A. Physiologically mediated self/nonself discrimination in roots. PNAS 2004; 101:3863–3867.

    Article  PubMed  CAS  Google Scholar 

  75. Falik O, Reides P, Gersani M et al. Self/nonself discrimination in roots. J Ecol 2003; 91:525–531.

    Article  Google Scholar 

  76. Hess L, de Kroon H. Effects of rooting volume and nutrient availability as an alternative explanation for root self/nonself discrimination. J Ecol 2007; 95:241–251.

    Article  Google Scholar 

  77. Dudley SA, File AL. Kin recognition in an annual plant. Biol Lett 2007; 3:435–438.

    Article  PubMed  Google Scholar 

  78. Karban R, Shiojiri K. Self-recognition affects plant communication and defense. Ecol Lett 2009; 12:502–506.

    Article  PubMed  Google Scholar 

  79. Runyon JB, Mescher MC, De Moraes CM. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006; 313:1964–1967.

    Article  PubMed  CAS  Google Scholar 

  80. Blande JD, Holopainen JK, Li T. Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett. 2010; 13(9):1172–81.

    Article  PubMed  Google Scholar 

  81. Chapman RF. The insects: Structure and function. Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  82. Slaymaker DH, Navarre DA, Clark D et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 2002; 99:11640–11645.

    Article  PubMed  CAS  Google Scholar 

  83. Vlot AC, Liu PP, Cameron RK et al. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J. 2008; 56:445–456.

    Article  PubMed  CAS  Google Scholar 

  84. Himanen SJ, Blande JD, Klemola et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants-a mechanism for associational herbivore resistance? New Phytologist 2010; 186: 722–732.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo K. Holopainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Holopainen, J.K., Blande, J.D. (2012). Molecular Plant Volatile Communication. In: López-Larrea, C. (eds) Sensing in Nature. Advances in Experimental Medicine and Biology, vol 739. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1704-0_2

Download citation

Publish with us

Policies and ethics