Skip to main content

Advertisement

Log in

Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM), the most common and aggressive brain tumor in humans, comprises a population of stem-like cells (GSCs) that are currently investigated as potential target for GBM therapy. Here, we used GSCs isolated from three different GBM surgical specimens to examine the antitumor activity of purines. Cultured GSCs expressed either metabotropic adenosine P1 and ATP P2Y receptors or ionotropic P2X7 receptors. GSC exposure for 48 h to 10–150 μM ATP, P2R ligand, or to ADPβS or MRS2365, P2Y1R agonists, enhanced cell expansion. This effect was counteracted by the PY1R antagonist MRS2500. In contrast, 48-h treatment with higher doses of ATP or UTP, which binds to P2Y2/4R, or 2′(3′)-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), P2X7R agonist, decreased GSC proliferation. Such a reduction was due to apoptotic or necrotic cell death but mostly to growth arrest. Accordingly, cell regrowth and secondary neurosphere formation were observed 2 weeks after the end of treatment. Suramin, nonselective P2R antagonist, MRS1220 or AZ11645373, selective A3R or P2X7R antagonists, respectively, counteracted ATP antiproliferative effects. AZ11645373 also abolished the inhibitory effect of Bz-ATP low doses on GSC growth. These findings provide important clues on the anticancer potential of ligands for A3R, P2Y1R, and P2X7R, which are involved in the GSC growth control. Interestingly, ATP and BzATP potentiated the cytotoxicity of temozolomide (TMZ), currently used for GBM therapy, enabling it to cause a greater and long-lasting inhibitory effect on GSC duplication when readded to cells previously treated with purine nucleotides plus TMZ. These are the first findings identifying purine nucleotides as able to enhance TMZ antitumor efficacy and might have an immediate translational impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  2. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283

    Article  PubMed  Google Scholar 

  3. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, Olson S, Gabrielli B, Osborne G, Vescovi A, Reynolds BA (2011) Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 134(Pt 5):1331–1343

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  PubMed  Google Scholar 

  6. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Morshead CM, Craig CG, van der Kooy D (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125:2251–2261

    CAS  PubMed  Google Scholar 

  8. Berger F, Gay E, Pelletier L, Tropel P, Wion D (2004) Development of gliomas: potential role of asymmetrical cell division of neural stem cells. Lancet Oncol 5(8):511–514

    Article  CAS  PubMed  Google Scholar 

  9. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  CAS  PubMed  Google Scholar 

  10. Pérez Castillo A, Aguilar-Morante D, Morales-García JA, Dorado J (2008) Cancer stem cells and brain tumors. Clin Transl Oncol 10:262–267

    Article  PubMed  Google Scholar 

  11. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  12. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MAR, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neuron and glial cells. Prog Neurobiol 59:663–690

    Article  CAS  PubMed  Google Scholar 

  13. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G, Ulrich H (2011) Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 68(8):1369–1394

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann H (2006) Nucleotide signaling in nervous system development. Pflugers Arch 452:573–588

    Article  CAS  PubMed  Google Scholar 

  16. Rishton GM (2008) Small molecules that promote neurogenesis in vitro. Recent Patents CNS Drug Discov 3(3):200–208

    Article  CAS  Google Scholar 

  17. Resende RR, Majumder P, Gomes KN, Britto LRG, Ulrich H (2007) P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-D-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 146:1169–1181

    Article  CAS  PubMed  Google Scholar 

  18. Migita H, Kominami K, Higashida M, Maruyama R, Tuchida N, McDonald F, Shimada F, Sakudara K (2008) Activation of adenosine A1 receptor-induced neural stem cells proliferation via MEK/ERK and Akt signaling pathway. J Neurosci Res 86:2820–2828

    Article  CAS  PubMed  Google Scholar 

  19. Jagasia R, Song H, Gage FH, Lie DC (2006) New regulators in adult neurogenesis and their potential role for repair. Trends Mol Med 12:400–405

    Article  CAS  PubMed  Google Scholar 

  20. Zang Y, Yu L-F, Pang T, Fang L-P, Feng X, Wen T-Q, Nan F-J, Feng L-Y, Li J (2008) AICAR induces astroglial differentiation of neural stem cells via activating the JAK/STAT3 pathway independently of AMP-activated protein kinase. J Biol Chem 283:6201–6208

    Article  CAS  PubMed  Google Scholar 

  21. White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    Article  CAS  PubMed  Google Scholar 

  22. Robak T, Robak P (2012) Purine nucleoside analogs in the treatment of rarer chronic lymphoid leukemias. Curr Pharm Des 18(23):3373–3388

    Article  CAS  PubMed  Google Scholar 

  23. Miano M, Pistorio A, Putti MC, Dufour C, Messina C, Barisone E, Ziino O, Parasole R, Luciani M, Lo Nigro L, De Rossi G, Varotto S, Bertorello N, Petruzziello F, Calvillo M, Micalizzi C (2012) Clofarabine, cyclophosphamide and etoposide for the treatment of relapsed or resistant acute leukemia in pediatric patients. Leuk Lymphoma 53(9):1693–1698

    Article  CAS  PubMed  Google Scholar 

  24. Holowiecki J, Grosicki S, Giebel S, Robak T, Kyrcz-Krzemien S, Kuliczkowski K, Skotnicki AB, Hellmann A, Sulek K, Dmoszynska A, Kloczko J, Jedrzejczak WW, Zdziarska B, Warzocha K, Zawilska K, Komarnicki M, Kielbinski M, Piatkowska-Jakubas B, Wierzbowska A, Wach M, Haus O (2012) Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: a multicenter, randomized phase III study. J Clin Oncol 30(20):2441–2448

    Article  CAS  PubMed  Google Scholar 

  25. Bellezza I, Tucci A, Minelli A (2008) 2-Chloroadenosine and human prostate cancer cells. Anticancer Agents Med Chem 8(7):783–789

    Article  CAS  PubMed  Google Scholar 

  26. Galmarini CM, Popowycz F, Joseph B (2008) Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr Med Chem 15(11):1072–1082

    Article  CAS  PubMed  Google Scholar 

  27. Kim H, Kang JW, Lee S, Choi WJ, Jeong LS, Yang Y, Hong JT, do Yoon Y (2010) A3 adenosine receptor antagonist, truncated thio-Cl-IB-MECA, induces apoptosis in T24 human bladder cancer cells. Anticancer Res 30(7):2823–2830

    CAS  PubMed  Google Scholar 

  28. Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33(2):287–295

    CAS  PubMed  Google Scholar 

  29. Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 285(2):L376–L385

    Article  PubMed  Google Scholar 

  30. Morrone FB, Jacques-Silva MC, Horn AP, Bernardi A, Schwartsmann G, Rodnight R, Lenz G (2003) Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines. J Neurooncol 64:211–218

    Article  PubMed  Google Scholar 

  31. Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PP, Barnard EA (2001) Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 276:16379–16390

    Article  CAS  PubMed  Google Scholar 

  32. Resende RR, Britto LRG, Ulrich H (2008) Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 carcinoma cells. Int J Dev Neurosci 26(7):763–777

    Article  CAS  PubMed  Google Scholar 

  33. Guarnieri S, Pilla R, Morabito C, Sacchetti S, Mancinelli R, Fanò G, Mariggiò MA (2009) Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 27(2):135–147

    Article  CAS  PubMed  Google Scholar 

  34. Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135(4):969–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2008) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  Google Scholar 

  36. Burnstock G (2002) Potential therapeutic targets in the rapidly expanding field of purinergic signalling. Clin Med 2(1):45–53

    Article  CAS  PubMed  Google Scholar 

  37. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors: an update. Pharmacol Rev 63(1):1–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mishra SK, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sevigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    Article  CAS  PubMed  Google Scholar 

  40. Ledur PF, Villodre ES, Paulus R, Cruz LA, Flores DG, Lenz G (2012) Extracellular ATP reduces tumor sphere growth and cancer stem cell population in glioblastoma cells. Purinergic Signal 8(1):39–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6:21–30

    Article  CAS  PubMed  Google Scholar 

  42. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  PubMed  Google Scholar 

  43. Braganhol E, Wink MR, Lenz G, Battastini AM (2013) Purinergic signaling in glioma progression. Adv Exp Med Biol 986:81–102

    Article  CAS  PubMed  Google Scholar 

  44. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13(7):1238–1241

    Article  CAS  PubMed  Google Scholar 

  45. Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM, De Maria R (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14(24):8205–8212

    Article  CAS  PubMed  Google Scholar 

  46. Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A, Gatti M, Bajetto A, Barbieri F, Favoni RE, Lo Casto M, Zona G, Spaziante R, Florio T, Corte G (2009) Different response of human glioma tumor-initiating cells to Epidermal Growth Factor receptor kinase inhibitors. J Biol Chem 284(11):7138–7148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Angelucci S, Marchisio M, Di Giuseppe F, Pierdomenico L, Sulpizio M, Eleuterio E, Lanuti P, Sabatino G, Miscia S, Di Ilio C (2010) Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci 8:18

    Article  PubMed Central  PubMed  Google Scholar 

  48. Vindeirinho J, Costa GN, Correia MB, Cavadas C, Santos PF (2013) Effect of diabetes/hyperglycemia on the rat retinal adenosinergic system. PLoS One 8(6), e67499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24(28):6307–6314

    Article  CAS  PubMed  Google Scholar 

  50. Alvarenga EC, Rodrigues R, Caricati-Neto A, Silva-Filho FC, Paredes-Gamero EJ, Ferreira AT (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46(2):355–362

    Article  CAS  PubMed  Google Scholar 

  51. Zhu CB, Lindler KM, Campbell NG, Sutcliffe JS, Hewlett WA, Blakely RD (2011) Colocalization and regulated physical association of presynaptic serotonin transporters with A3 adenosine receptors. Mol Pharmacol 80(3):458–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Montano N, Cenci T, Martini M, D’Alessandris QG, Pelacchi F, Ricci-Vitiani L, Maira G, de Maria R, Larocca LM, Pallini R (2011) Expresion of EGFRvIII in glioblastoma: prognostic significance revisited. Neoplasia 13(12):1113–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R, Aldape K (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466

    Article  CAS  PubMed  Google Scholar 

  54. Hegi ME, Diserens AC, Gorlia T, Hamou MF, deTribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  55. Roger S, Pelegrin P (2011) P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs 20(7):875–880

    Article  CAS  PubMed  Google Scholar 

  56. Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, Abalo AA, Paiva MM, Coutinho CM, Coutinho-Silva R (2012) Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta 1820(12):1867–1878

    Article  CAS  PubMed  Google Scholar 

  57. Vlachostergios PJ, Hatzidaki E, Papandreou CN (2013) MGMT repletion after treatment of glioblastoma cells with temozolomide and O6-benzylguanine implicates NFκB and mutant p53. Neurol Res 35(8):879–882

    Article  CAS  PubMed  Google Scholar 

  58. Ceruti S, Abbracchio MP (2013) Adenosine signaling in glioma cells. Adv Exp Med Biol 986:13–30

    Article  CAS  PubMed  Google Scholar 

  59. Tafani M, Di Vito M, Frati A, Pellegrini L, De Santis E, Sette G, Eramo A, Sale P, Mari E, Santoro A, Raco A, Salvati M, De Maria R, Russo MA (2011) Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J Neuroinflammation 8:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Madi LOA, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10(13):4472–4479

    Article  CAS  PubMed  Google Scholar 

  61. Anccasi RM, Ornelas IM, Cossenza M, Persechini PM, Ventura AL (2013) ATP induces the death of developing avian retinal neurons in culture via activation of P2X7 and glutamate receptors. Purinergic Signal 9(1):15–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kim TH, Kim YK, Woo JS (2012) The adenosine A3 receptor agonist Cl-IB-MECA induces cell death through Ca(2+)/ROS-dependent down regulation of ERK and Akt in A172 human glioma cells. Neurochem Res 37(12):2667–2677

    Article  CAS  PubMed  Google Scholar 

  63. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17(7-8):359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969

    Article  CAS  PubMed  Google Scholar 

  65. Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AM, Ulrich H (2012) Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 8(3):523–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Taliani S, La Motta C, Mugnaini L, Simorini F, Salerno S, Marini AM, Da Settimo F, Cosconati S, Cosimelli B, Greco G, Limongelli V, Marinelli L, Novellino E, Ciampi O, Daniele S, Trincavelli ML, Martini C (2010) Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: inhibition of A3-mediated human glioblastoma cell proliferation. J Med Chem 53(10):3954–3963

    Article  CAS  PubMed  Google Scholar 

  67. Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML (2014) Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis 5, e1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Leij-Halfwerk S, Agteresck KJ, Sijens PE, Dagnelie PC (2002) Adenosine triphosphate infusion increases liver energy status in advanced lung cancer patients: an in vivo 31P magnetic resonance spectroscopy study. Hepatology 35(2):421–424

    Article  CAS  PubMed  Google Scholar 

  69. Beijer S, van Rossum E, Hupperets PS, Spreeuwenberg C, van den Beuken M, Winkens RA, van den Borne BE, de Graeff A, Dagnelie PC (2007) Application of adenosine 5’-triphosphate (ATP) infusions in palliative home care: design of a randomized clinical trial. BMC Public Health 7:4

    Article  PubMed Central  PubMed  Google Scholar 

  70. Shabbir M, Burnstock G (2009) Purinergic receptor-mediated effects of adenosine 5’-triphosphate in urological malignant diseases. Int J Urol 16:143–150

    Article  CAS  PubMed  Google Scholar 

  71. Barberà-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P (2012) P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release. FASEB J 26(7):2951–2962

    Article  PubMed  Google Scholar 

  72. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-senstive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106(30):12489–12493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wei Q, Costanzi S, Liu QZ, Gao ZG, Jacobson KA (2011) Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem Pharmacol 82(4):418–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Peigñan L, Garrido W, Segura R, Melo R, Rojas D, Cárcamo JG, San Martín R, Quezada C (2011) Combined use of anticancer drugs and an inhibitor of multiple drug resistance-associated protein-1 increases sensitivity and decreases survival of glioblastoma multiforme cells in vitro. Neurochem Res 36(8):1397–1406

    Article  PubMed  Google Scholar 

  75. Filippi-Chiela EC, Thome MP, Bueno e Silva MM, Pelegrini AL, Ledur PF, Garicochea B, Zamin LL, Lenz G (2013) Resveratrol abrogates the temozolomide-induced G2 arrest leading to mitotic catastrophe and reinforces the temozolomide-induced senescence in glioma cells. BMC Cancer 13:147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interest. Study supported by a grant to R.C. from the Italian Government (PRIN, prot. 2008H42W5X_002) and in part by a grant to StemTeCh Group from CARICHIETI Foundation. We thank Prof. Marco Marchisio and Dr. Laura Pierdomenico (Dept. of Medicine and Aging Sciences, University of Chieti) for their invaluable support for the experiments in which cytofluorimetric analysis was used to determine the cell cycle distribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Ciccarelli.

Additional information

Francesco Caciagli and Renata Ciccarelli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alimonte, I., Nargi, E., Zuccarini, M. et al. Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signalling 11, 331–346 (2015). https://doi.org/10.1007/s11302-015-9454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9454-7

Keywords

Navigation