Skip to main content

Advertisement

Log in

Cancer stem cells and brain tumors

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Besides the role of normal stem cells in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Most current research on human tumors is focused on molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and, more recently, in solid tumors suggests that the tumor cell population is heterogeneous. In recent years, several groups have described the existence of a cancer stem cell population in different brain tumors. These neural cancer stem cells (NC-SC) can be isolated by cell sorting of dissociated suspensions of tumor cells for the neural stem cell marker CD133. These CD133+ cells —which also express nestin, an intermediate filament that is another neural stem cell marker—represent a small fraction of the entire brain tumor population. The stem-like cancer cells appear to be solely responsible for propagating the disease in laboratory models. A promising new approach to treating glioblastoma proposes targeting cancer stem cells. Here, we summarize progress in delineating NCSC and the implications of the discovery of this cell population in human brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  3. Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  5. Tlsty TD, Hein PW (2001) Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 11:54–59

    Article  PubMed  CAS  Google Scholar 

  6. Kitange GJ, Templeton KL, Jenkins RB (2003) Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 15:197–203

    Article  PubMed  CAS  Google Scholar 

  7. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  8. Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    Article  PubMed  CAS  Google Scholar 

  9. Zhu Y, Guignard F, Zhao D et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

  10. Bachoo RM, Maher EA, Ligon KL et al (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1:269–277

    Article  PubMed  CAS  Google Scholar 

  11. Uhrbom L, Dai C, Celestino JC et al (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558

    PubMed  CAS  Google Scholar 

  12. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  13. Luskin MB, Zigova T, Soteres BJ, Stewart RR (1997) Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci 8:351–366

    Article  PubMed  CAS  Google Scholar 

  14. Gage FH, Kempermann G, Palmer TD et al (1998) Multipotent progenitor cell sin the adult dentate gyrus. J Neurobiol 36:249–266

    Article  PubMed  CAS  Google Scholar 

  15. Ostenfeld T, Svendsen CN (2003) Recent advances in stem cell neurobiology. Adv Tech Stand Neurosurg 28:3–89

    PubMed  CAS  Google Scholar 

  16. Bartlett PF, Richards LR, Kilpatrick TJ et al (1995) Factors regulating the differentiation of neural precursors in the forebrain. Ciba Found Symp 193:85–99; discussion 117–126

    PubMed  CAS  Google Scholar 

  17. Johe KK, Hazel TG, Muller T et al (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  18. Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  19. Berger F, Gay E, Pelletier L et al (2004) Development of gliomas: potential role of asymmetrical cell division of neural stem cells. Lancet Oncol 5:511–514

    Article  PubMed  CAS  Google Scholar 

  20. Oliver TG, Wechsler-Reya RJ (2004) Getting at the root and stem of brain tumors. Neuron 42:885–888

    Article  PubMed  CAS  Google Scholar 

  21. Fomchenko EI, Holland EC (2005) Stem cells and brain cancer. Exp Cell Res 306:323–329

    Article  PubMed  CAS  Google Scholar 

  22. Clarke MF (2004) Neurobiology: at the root of brain cancer. Nature 432:281–282

    Article  PubMed  CAS  Google Scholar 

  23. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  24. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    Article  PubMed  CAS  Google Scholar 

  25. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  PubMed  CAS  Google Scholar 

  26. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  27. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    Article  PubMed  CAS  Google Scholar 

  28. Moinfar F, Man YG, Arnould L et al (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    PubMed  CAS  Google Scholar 

  29. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    Article  PubMed  CAS  Google Scholar 

  30. Kenny PA, Lee GY, Bissell MJ (2007) Targeting the tumor microenvironment. Front Biosci 12:3468–3474

    Article  PubMed  CAS  Google Scholar 

  31. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  32. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Article  PubMed  CAS  Google Scholar 

  33. Piccirillo SG, Reynolds BA, Zanetti N et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  PubMed  CAS  Google Scholar 

  34. Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17:3051–3061

    Article  PubMed  CAS  Google Scholar 

  35. Barker N, van Es JH, Kuipers J, Kujala P et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  36. Kiel MJ, He S, Ashkenazi R et al (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    Article  PubMed  CAS  Google Scholar 

  37. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101:781–786

    Article  PubMed  CAS  Google Scholar 

  38. Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  39. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  40. Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  41. Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  42. Zeppernick F, Ahmadi R, Campos B et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  PubMed  CAS  Google Scholar 

  43. Pahlman S, Stockhausen MT, Fredlund E, Axelson H (2004) Notch signaling in neuroblastoma. Semin Cancer Biol 14:365–373

    Article  PubMed  CAS  Google Scholar 

  44. Purow BW, Haque RM, Noel MW et al (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65:2353–2363

    Article  PubMed  CAS  Google Scholar 

  45. Zhang XP, Zheng G, Zou L et al (2008) Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307:101–108

    Article  PubMed  CAS  Google Scholar 

  46. Fan X, Matsui W, Khaki L et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    Article  PubMed  CAS  Google Scholar 

  47. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715

    Article  PubMed  CAS  Google Scholar 

  48. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  49. Guzman ML, Swiderski CF, Howard DS et al (2002) Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A 99:16220–16225

    Article  PubMed  CAS  Google Scholar 

  50. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  51. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  52. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  53. Woodward WA, Chen MS, Behbod F et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623

    Article  PubMed  CAS  Google Scholar 

  54. Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  55. Gorgoulis VG, Vassiliou LV, Karakaidos Pet al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  56. Liu G, Yuan X, Zeng Zet al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Pérez-Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Castillo, A., Aguilar-Morante, D., Morales-García, J.A. et al. Cancer stem cells and brain tumors. Clin Transl Oncol 10, 262–267 (2008). https://doi.org/10.1007/s12094-008-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0195-8

Keywords

Navigation