Skip to main content
Log in

Nucleotide signaling in nervous system development

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The development of the nervous system requires complex series of cellular programming and intercellular communication events that lead from the early neural induction to the formation of a highly structured central and peripheral nervous system. Neurogenesis continuously takes place also in select regions of the adult mammalian brain. During the past years, a multiplicity of cellular control mechanisms has been identified, ranging from differential transcriptional mediators to inducers or inhibitors of cell specification or neurite outgrowth. While the identification of transcription factors typical for the stage-specific progression has been a topic of key interest for many years, less is known concerning the potential multiplicity of relevant intercellular signaling pathways and the fine tuning of epigenetic gene regulation. Nucleotide receptors can induce a multiplicity of cellular signaling pathways and are involved in multiple molecular interactions, thus opening the possibility of cross talk between several signaling pathways, including growth factors, cytokines, and extracellular matrix components. An increasing number of studies provides evidence for a role of nucleotide signaling in nervous system development. This includes progenitor cell proliferation, cell migration, neuronal and glial cellular interaction and differentiation, and synaptic network formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbracchio MP, Brambilla R, Ceruti S, Cattabeni F (1999) Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis. Prog Brain Res 120:333–342

    PubMed  CAS  Google Scholar 

  2. Abe Y, Sorimachi M, Itoyama Y, Furukawa K, Akaike N (1995) ATP responses in the embryo chick ciliary ganglion cells. Neuroscience 64:547–551

    PubMed  CAS  Google Scholar 

  3. Abrous DN, Koehl M, LeMoal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    PubMed  CAS  Google Scholar 

  4. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonté C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144

    PubMed  CAS  Google Scholar 

  5. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C, Aloisi F, Visentin S (2005) ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 48:157–165

    PubMed  CAS  Google Scholar 

  6. Alloisio S, Cugnoli C, Ferroni S, Nobile M (2004) Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes. Brit J Pharmacol 141:935–942

    CAS  Google Scholar 

  7. Alvarez-Buylla A, García-Verdugo JM (2002) Neurogenesis in the adult ventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  8. Annerén C, Cowan CA, Melton DA (2004) The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem 279:31590–31598

    PubMed  Google Scholar 

  9. Arthur DB, Akassoglou K, Insel PA (2005) P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Proc Natl Acad Sci USA 102:19138–19143

    PubMed  CAS  Google Scholar 

  10. Bagchi S, Liao ZJ, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L (2005) The P2Y2 nucleotide receptor interacts with alphaV integrins to activate Go and induce cell migration. J Biol Chem 280:39050–39057

    PubMed  CAS  Google Scholar 

  11. Bailly Y, Schoen SW, Delhaye-Bouchaud N, Kreutzberg GW, Mariani J (1995) 5′-Nucleotidase activity as a synaptic marker of parasagittal compartmentation in the mouse cerebellum. J Neurocytol 24:879–890

    PubMed  CAS  Google Scholar 

  12. Baker OJ, Camden JM, Ratchford AM, Seye CI, Erb L, Weisman GA (2006) Differential coupling of the P2Y1 receptor to Gα14 and Gαq/11 proteins during the development of the rat salivary gland. Arch Oral Biol (in press)

  13. Bally-Cuif L, Hammerschmidt M (2003) Induction and patterning of neuronal development, and its connection to cell cycle control. Curr Opin Neurobiol 13:16–25

    PubMed  CAS  Google Scholar 

  14. Barnard EA, Simon J, Tsim KWK, Filippov AK, Brown DA (2003) Signalling pathways and ion channel regulations of P2Y receptors. Drug Dev Res 59:36–48

    CAS  Google Scholar 

  15. Bächner D, Ahrens M, Betat N, Schröder D, Gross G (1999) Developmental expression analysis of murine autotaxin (ATX). Mech Dev 84:121–125

    PubMed  Google Scholar 

  16. Behrsing HP, Vulliet PR (2004) Mitogen-activated protein kinase mediates purinergic-enhanced nerve growth factor-induced neurite outgrowth in PC12 cells. J Neurosci Res 78:64–67

    PubMed  CAS  Google Scholar 

  17. Belcher SM, Zsarnovzky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep wake bahaviors. Neuroscience 137:1331–1346

    PubMed  CAS  Google Scholar 

  18. Bianco F, Fumagalli M, Pravettoni E, D’Ambrosi N, Volonté C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48:144–156

    PubMed  CAS  Google Scholar 

  19. Bigonnesse F, Lévesque SA, Kukulski F, Lecka J, Robson SC, Fernandes MJG, Sévigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry (USA) 43:5511–5519

    CAS  Google Scholar 

  20. Blass-Kampmann S, Kindler-Rohrborn A, Deissler H, D’Urso D, Rajewsky MF (1997) In vitro differentiation of neural progenitor cells from prenatal rat brain: common cell surface glycoprotein on three glial subsets. J Neurosci Res 48:95–111

    PubMed  CAS  Google Scholar 

  21. Bogdanov YD, Dale L, King BF, Whittock N, Burnstock G (1997) Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem 272:12583–12590

    PubMed  CAS  Google Scholar 

  22. Boldogköi Z, Schutz B, Sallach J, Zimmer A (2002) P2X3 receptor expression at early stage of mouse embryogenesis. Mech Dev 118:255–260

    PubMed  Google Scholar 

  23. Bolteus AJ, Liu X, Bordey A (2005) Postnatal neuronal precursors from the subventricular zone express ionotropic ATP receptors. Program No. 595 17 2005, Abstract Viewer/Itinery Planner Washington, DC: Society for Neuroscience, Online

  24. Braun N, Sévigny J, Mishra S, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    PubMed  Google Scholar 

  25. Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132

    PubMed  Google Scholar 

  26. Brautigam VM, Frasier C, Nikodemova M, Watters JJ (2005) Purinergic receptor modulation of BV-2 microglial cell activity: potential involvement of p38 MAP kinase and CREB. J Neuroimmunol 166:113–125

    PubMed  CAS  Google Scholar 

  27. Brändle U, Zenner HP, Ruppersberg JP (1999) Gene expression of P2X-receptors in the developing inner ear of the rat. Neurosci Lett 273:105–108

    PubMed  Google Scholar 

  28. Brosenitsch TA, Adachi T, Lipski J, Housley GD, Funk GD (2005) Developmental downregulation of P2X3 receptors in motoneurons of the compact formation of the nucleus ambiguus. Eur J Neurosci 22:809–824

    PubMed  Google Scholar 

  29. Buffo A, Vosko MR, Erturk D, Hamann GF, Jucker M, Rowitch D, Götz M (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102:18183–18188

    PubMed  CAS  Google Scholar 

  30. Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39:204–242

    CAS  Google Scholar 

  31. Burnstock G (2001) Purinergic signalling in development. In: Abbracchio MP, Williams M (eds) Purinergic and pyrimidergic singnalling I. Molecular, nervous and urogenitary system function. Springer, Berlin Heidelberg New York, pp 89–127

    Google Scholar 

  32. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  33. Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131:2173–2181

    PubMed  CAS  Google Scholar 

  34. Camden JM, Schrader AM, Camden RE, Gonzalez FA, Erb L, Seye CI, Weisman GA (2005) P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J Biol Chem 280:18696–18702

    PubMed  CAS  Google Scholar 

  35. Campbell K (2003) Dorsal–ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol 13:50–56

    PubMed  CAS  Google Scholar 

  36. Canals M, Angulo E, Casadó V, Canela EI, Mallol J, Vinals F, Staines W, Tinner B, Hillion J, Agnati L, Fuxe K, Ferré S, Lluis C, Franco R (2005) Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. J Neurochem 92:337–348

    PubMed  CAS  Google Scholar 

  37. Casel D, Brockhaus J, Deitmer JW (2005) Enhancement of spontaneous synaptic activity in rat Purkinje neurones by ATP during development. J Physiol (London) 568:111–122

    CAS  Google Scholar 

  38. Cavaliere F, Nestola V, Amadio S, D’Ambrosi N, Angelini DF, Sancesario G, Bernardi G, Volonté C (2005) The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells. Neurobiol Dis 18:100–109

    PubMed  CAS  Google Scholar 

  39. Cheung KK, Burnstock G (2002) Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis. J Comp Neurol 443:368–382

    PubMed  CAS  Google Scholar 

  40. Cheung KK, Chan WY, Burnstock G (2005) Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience 133:937–945

    PubMed  CAS  Google Scholar 

  41. Cheung KK, Ryten M, Burnstock G (2003) Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development. Dev Dyn 228:254–266

    PubMed  CAS  Google Scholar 

  42. Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, Gonzalez FA (2004) P2Y2 receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    PubMed  CAS  Google Scholar 

  43. Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM (2003) Potential embryonic and adult stem cells in vitro. Biol Chem 384:1391–1409

    PubMed  CAS  Google Scholar 

  44. D’Ambrosi N, Cavaliere F, Merlo D, Milazzo L, Mercanti D, Volonté C (2000) Antagonists of P2 receptor prevent NGF-dependent neuritogenesis in PC12 cells. Neuropharmacology 39:1083–1094

    PubMed  CAS  Google Scholar 

  45. D’Ambrosi N, Murra B, Cavaliere F, Amadio S, Bernardi G, Burnstock G, Volonté C (2001) Interaction between ATP and nerve growth factor signalling in the survival and neuritic outgrowth from PC12 cells. Neuroscience 108:527–534

    PubMed  CAS  Google Scholar 

  46. D’Ambrosi N, Murra B, Vacca F, Volonté C (2004) Pathways of survival induced by NGF and extracellular ATP after growth factor deprivation. Prog Brain Res 146:93–100

    PubMed  CAS  Google Scholar 

  47. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    PubMed  CAS  Google Scholar 

  48. Deissler H, Blass-Kampmann S, Bruyneel E, Mareel M, Rajewsky MF (1999) Neural cell surface differentiation antigen gp130RB13−6 induces fibroblasts and glioma cells to express astroglial proteins and invasive properties. FASEB J 13:657–666

    PubMed  CAS  Google Scholar 

  49. Delicado EG, Jimenez AI, Carrasquero LMG, Castro E, Miras-Portugal MT (2005) Cross-talk among epidermal growth factor, Ap5A, and nucleotide receptors causing enhanced ATP Ca2+ signaling involves extracellular kinase activation in cerebellar astrocytes. J Neurosci Res 81:789–796

    PubMed  CAS  Google Scholar 

  50. Dennis J, Nogaroli L, Fuss B (2005) Phosphodiesterase-Iα/autotaxin (PD-Iα/ATX): a multifunctional protein involved in central nervous system development. J Neurosci Res 82:737–742

    PubMed  CAS  Google Scholar 

  51. Di Iorio P, Kleywegt S, Ciccarelli R, Traversa U, Andrew CM, Crocker CE, Werstiuk ES, Rathbone MP (2002) Mechanisms of apoptosis induced by purine nucleosides in astrocytes. Glia 38:179–190

    PubMed  Google Scholar 

  52. Dodd J, Jessell TM, Placzek M (1998) The when and where of floor plate induction. Science 282:1654–1657

    PubMed  CAS  Google Scholar 

  53. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    PubMed  CAS  Google Scholar 

  54. Dunn PM, Gever J, Ruan HZ, Burnstock G (2005) Developmental changes in heteromeric P2X2/3 receptor expression in rat sympathetic ganglion neurons. Devel Dyn 234:505–511

    CAS  Google Scholar 

  55. Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75:321–341

    PubMed  CAS  Google Scholar 

  56. Erb L, Liu J, Ockerhausen J, Kong QM, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with aVβ3 integrins and is required for Go-mediated signal transduction. J Cell Biol 153:491–501

    PubMed  CAS  Google Scholar 

  57. Fam SR, Paquet M, Castleberry AM, Oller H, Lee CJ, Traynelis SF, Smith Y, Yun CC, Hall RA (2005) P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proc Natl Acad Sci USA 102:8042–8047

    PubMed  CAS  Google Scholar 

  58. Fenoglio C, Scherini E, Vaccarone R, Bernocchi G (1995) A re-evaluation of the ultrastructural localization of 5′-nucleotidase activity in the developing rat cerebellum, with a cerium-based method. J Neurosci Methods 59:253–263

    PubMed  CAS  Google Scholar 

  59. Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    PubMed  Google Scholar 

  60. Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196

    PubMed  Google Scholar 

  61. Fox MA, Alexander JK, Afshari FS, Colello RJ, Fuss B (2004) Phosphodiesterase-Iα/autotaxin and IFAK phosphorylation during controls cytoskeletal organization myelination. Mol Cell Neurosci 27:140–150

    PubMed  CAS  Google Scholar 

  62. Fox MA, Colello RJ, Macklin WB, Fuss B (2003) Phosphodiesterase-Iα/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol Cell Neurosci 23:507–519

    PubMed  CAS  Google Scholar 

  63. Franke H, Bringmann A, Pannicke T, Krügel U, Grosche J, Reichenbach A, Illes P (2001) P2 receptors on macroglial cells: functional implications for gliosis. Drug Dev Res 53:140–147

    CAS  Google Scholar 

  64. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    PubMed  CAS  Google Scholar 

  65. Franke H, Krügel U, Schmidt R, Grosche J, Reichenbach A, Illes P (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180–1189

    PubMed  CAS  Google Scholar 

  66. Frisén J, Johannson CB, Lothian C, Lendahl U (1998) Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci 54:935–945

    PubMed  Google Scholar 

  67. Fumagalli M, Brambilla R, D’Ambrosi N, Volonté C, Matteoli M, Verderio C, Abracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    PubMed  Google Scholar 

  68. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB (1997) Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17:9095–9103

    PubMed  CAS  Google Scholar 

  69. Gangemi RMR, Perera M, Corte G (2004) Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem 89:286–306

    PubMed  CAS  Google Scholar 

  70. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    PubMed  CAS  Google Scholar 

  71. Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–C581

    PubMed  CAS  Google Scholar 

  72. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta, Mol Basis Dis 1638:1–19

    CAS  Google Scholar 

  73. Götz M, Barde YA (2005) Radial glial cells: defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46:369–372

    PubMed  Google Scholar 

  74. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  75. Grinspan J (2002) Cells and signaling in oligodendrocyte development. J Neuropathol Exp Neurol 61:297–306

    PubMed  CAS  Google Scholar 

  76. Gritti A, Parati EA, Cova L, Frolichsthal P, Galii R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100

    PubMed  CAS  Google Scholar 

  77. Guarnieri S, Fano G, Rathbone MP, Mariggio MA (2004) Cooperation in signal transduction of extracellular guanosine 5′ triphosphate and nerve growth factor in neuronal differentiation of PC12 cells. Neuroscience 128:697–712

    PubMed  CAS  Google Scholar 

  78. Gysbers JW, Guarnieri S, Mariggiò MA, Pietrangelo T, Fanò G, Rathbone MP (2000) Extracellular guanosine 5′ triphosphate enhances nerve growth factor-induced neurite outgrowth via increases in intracellular calcium. Neuroscience 96:817–824

    PubMed  CAS  Google Scholar 

  79. Hagg T (2005) Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci 28:589–595

    PubMed  CAS  Google Scholar 

  80. Heilbronn A, Maienschein V, Carstensen C, Gann W, Zimmermann H (1995) Crucial role of 5′-nucleotidase in differentiation and survival of developing neural cells. Neuroreport 7:257–261

    PubMed  CAS  Google Scholar 

  81. Heilbronn A, Zimmermann H (1995) 5′-Nucleotidase activates and an inhibitory antibody prevents neuritic differentiation of PC12 cells. Eur J Neurosci 7:1172–1179

    PubMed  CAS  Google Scholar 

  82. Hogg RC, Chipperfield H, Whyte KA, Stafford MR, Hansen MA, Cool SM, Nurcombe V, Adams DJ (2004) Functional maturation of isolated neural progenitor cells from the adult rat hippocampus. Eur J Neurosci 19:2410–2420

    PubMed  Google Scholar 

  83. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through GI/o-coupled P2Y receptors. J Neurosci 21:1975–1982

    PubMed  CAS  Google Scholar 

  84. Housley GD, Luo L, Ryan AF (1998) Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J Comp Neurol 393:403–414

    PubMed  CAS  Google Scholar 

  85. Housley GD, Ryan AF (1997) Cholinergic and purinergic neurohumoral signaling in the inner ear: a molecular physiological analysis. Audiol Neurootol 2:92–110

    Article  PubMed  CAS  Google Scholar 

  86. Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469

    PubMed  CAS  Google Scholar 

  87. Huang LC, Greenwood D, Thorne PR, Housley GD (2005) Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 484:133–143

    PubMed  CAS  Google Scholar 

  88. Huang N, Wang DJ, Heppel LA (1989) Extracellular ATP is a mitogen for 3T3, 3T6, and A431 cells and acts synergistically with other growth factors. Proc Natl Acad Sci USA 86:7904–7908

    PubMed  CAS  Google Scholar 

  89. Huovila APJ, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30:413–422

    PubMed  CAS  Google Scholar 

  90. Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62:1100–1108

    PubMed  CAS  Google Scholar 

  91. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40:156–163

    PubMed  Google Scholar 

  92. Jacques-Silva MC, Rodnight R, Lenz G, Liao ZJ, Kong QM, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    PubMed  CAS  Google Scholar 

  93. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated in the central Ca2+ signalling in glial cell pathology nervous system. Eur J Pharmacol 447:247–260

    PubMed  CAS  Google Scholar 

  94. Jang IS, Rhee JS, Kubota H, Akaike N (2001) Developmental changes in P2X purinoceptors on glycinergic presynaptic nerve terminals projecting to rat substantia gelatinosa neurones. J Physiol (London) 536:505–519

    CAS  Google Scholar 

  95. Järlebark LE, Housley GD, Thorne PR (2000) Immunohistochemical localization of adenosine 5′-triphosphate-gated ion channel P2X2 receptor subunits in adult and developing rat cochlea. J Comp Neurol 421:289–301

    PubMed  Google Scholar 

  96. Jessen KR, Mirsky R (1999) Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22:402–410

    PubMed  CAS  Google Scholar 

  97. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, Mckay RDG (1996) Single factors direct differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    PubMed  CAS  Google Scholar 

  98. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    PubMed  CAS  Google Scholar 

  99. Kidd EJ, Miller KJ, Sansum AJ, Humphrey PPA (1998) Evidence for P2X3 receptors in the developing rat brain. Neuroscience 87:533–539

    PubMed  CAS  Google Scholar 

  100. King BF, Neary JT, Zhu Q, Wang S, Norenberg MD, Burnstock G (1996) P2 purinoceptors in rat cortical astrocytes: expression, calcium imaging and signalling studies. Neuroscience 74:1187–1196

    PubMed  CAS  Google Scholar 

  101. Kohring K, Zimmermann H (1998) Upregulation of ecto-5′-nucleotidase in human neuroblastoma SH-SY5Y cells on differentiation by retinoic acid or phorbolester. Neurosci Lett 258:127–130

    PubMed  CAS  Google Scholar 

  102. Kotevic I, Kirschner KM, Porzig H, Baltensperger K (2005) Constitutive interaction of the P2Y2 receptor with the hematopoietic cell-specific G protein Gα16 and evidence for receptor oligomers. Cell Signal 17:869–880

    PubMed  CAS  Google Scholar 

  103. Kriegstein A, Götz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43

    PubMed  Google Scholar 

  104. Lazarowski ER (2003) Molecular and biological properties of P2Y receptors. In: Schwiebert EM (ed) Extracellular nucleotides and nucleosides: release, receptors, and physiological and pathophysiological effects. Academic, Amsterdam pp 59–96

    Google Scholar 

  105. LeFeuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447:261–269

    CAS  Google Scholar 

  106. Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, Forchap S, Chiozzi P, Vaselli D, Bertolini F, Foutz T, Aluigi M, Baccarani M, Di Virgilio F (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104:1662–1670

    PubMed  CAS  Google Scholar 

  107. Lenz G, Gottfried C, Luo ZJ, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinoceptor subtypes recruit different Mek activators in astrocytes. Br J Pharmacol 129:927–936

    PubMed  CAS  Google Scholar 

  108. Lie AA, Blumcke I, Beck H, Wiestler OD, Elger CE, Schoen SW (1999) 5′-nucleotidase activity indicates sites of synaptic plasticity and reactive synaptogenesis in the human brain. J Neuropathol Exp Neurol 58:451–458

    PubMed  CAS  Google Scholar 

  109. Lie DC, Song HJ, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421

    PubMed  CAS  Google Scholar 

  110. Liu J, Liao ZJ, Camden J, Griffin KD, Garrad RC, Santiago-Perez LI, Gonzalez FA, Seye CI, Weisman GA, Erb L (2004) Src homology 3 binding sites in the P2Y2 nucleotide receptor interact with Src and regulate activities of Src, proline-rich tyrosine kinase 2, and growth factor receptors. J Biol Chem 279:8212–8218

    PubMed  CAS  Google Scholar 

  111. Lois C, Garcia-Verdugo J-M, Alvarez-Buylla A (1996) Chain migration of neural precursors. Science 271:978–981

    PubMed  CAS  Google Scholar 

  112. Mayer C, Quasthoff S, Grafe P (1998) Differences in the sensitivity to purinergic stimulation of myelinating and non-myelinating Schwann cells in peripheral human and rat nerve. Glia 23:374–382

    PubMed  CAS  Google Scholar 

  113. Menezes JRL, Smith CM, Nelson KC, Luskin MB (1995) The division of neural progenitor cells during migration in the neonatal mammalian forebrain. Mol Cell Neurosci 6:496–508

    PubMed  CAS  Google Scholar 

  114. Meyer MP, Clark JDW, Patel K, Townsend-Nicholson A, Burnstock G (1999) Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. Dev Dyn 214:152–158

    PubMed  CAS  Google Scholar 

  115. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Investig Ophthalmol Vis Sci 44:1211–1220

    Google Scholar 

  116. Miras-Portugal MT, Gualix J, Mateo J, Díaz-Hernández M, Gómez-Villafuertes R, Castro E, Pintor J (1999) Diadenosine polyphosphates, extracellular function and catabolism. Prog Brain Res 120:397–409

    Article  PubMed  CAS  Google Scholar 

  117. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf H-W, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    PubMed  CAS  Google Scholar 

  118. Misson JP, Takahashi D, Caviness VSJ (1991) Ontogeny of radial and other astroglia cells in murine cerebral cortex. Glia 4:138–148

    Google Scholar 

  119. Molliver DC, Cook SP, Carlsten JA, Wright DE, McCleskey EW (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860

    PubMed  Google Scholar 

  120. Moore DJ, Chambers JK, Murdock PR, Emson PC (2002) Human Ntera-2/D1 neuronal progenitor cells endogenously express a functional P2Y1 receptor. Neuropharmacology 43:966–978

    PubMed  CAS  Google Scholar 

  121. Morelli A, Ferrari D, Bolognesi G, Rizzuto R, DiVirgilio F (2001) Proapoptotic plasma membrane pore: P2X7 receptor. Drug Dev Res 52:571–578

    CAS  Google Scholar 

  122. Müller J, Rocha JBT, Battastini AMO, Sarkis JJF, Dias RD (1993) Postnatal development of ATPase–ADPase activities in synaptosomal fraction from cerebral cortex of rats. Neurochem Int 23:471–477

    PubMed  Google Scholar 

  123. Nakata H, Yoshioka K, Kamiya T, Tsuga H, Oyanagi K (2005) Functions of heteromeric association between adenosine and P2Y receptors. J Mol Neurosci 26:233–238

    PubMed  CAS  Google Scholar 

  124. Narisawa S, Fröhlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    PubMed  CAS  Google Scholar 

  125. Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development of the mouse. Dev Dyn 201:227–235

    PubMed  CAS  Google Scholar 

  126. Neary JT, Whittemore SR, Zhu Q, Norenberg MD (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factor and extracellular ATP. J Neurochem 63:490–494

    Article  PubMed  CAS  Google Scholar 

  127. Neary JT, Kang Y, Bu YR, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C calcium pathway. J Neurosci 19:4211–4220

    PubMed  CAS  Google Scholar 

  128. Neary JT, Kang Y, Shi YF (2004) Signaling from nucleotide receptors to protein kinase cascades in astrocytes. Neurochem Res 29:2037–2042

    PubMed  CAS  Google Scholar 

  129. Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  130. Neary JT, Lenz G, Kang Y, Rodnight R, Avruch J (2001) Role of mitogen-activated protein kinase cascades in P2Y receptor-mediated trophic activation of astroglial cells. Drug Dev Res 53:158–165

    CAS  Google Scholar 

  131. Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242:159–162

    PubMed  CAS  Google Scholar 

  132. Neary JT, Rathbone MP, Cattabeni F, Abbracchio MP, Burnstock G (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19:13–18

    PubMed  CAS  Google Scholar 

  133. Neary JT, Zhu Q (1994) Signaling by ATP receptors in astrocytes. Neuroreport 5:1617–1620

    PubMed  CAS  Google Scholar 

  134. Nikolic P, Housley GD, Luo L, Ryan AF, Thorne PR (2001) Transient expression of P2X1 receptor subunits of ATP-gated ion channels in the developing rat cochlea. Dev Brain Res 126:173–182

    CAS  Google Scholar 

  135. Nikolic P, Housley GD, Thorne PR (2003) Expression of the P2X7 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the developing and adult rat cochlea. Audiol Neuro–Otol 8:28–37

    CAS  Google Scholar 

  136. Noble M, Arhin A, Gass D, Mayer-Proschel M (2003) The cortical ancestry of oligodendrocytes: common principles and novel features. Dev Neurosci 25:217–233

    PubMed  CAS  Google Scholar 

  137. Noctor S, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    PubMed  CAS  Google Scholar 

  138. Noda T, Tokuda H, Yoshida M, Yasuda E, Hanai Y, Takai S, Kozawa O (2005) Possible involvement of phosphatidylinositol 3-kinase/Akt pathway in insulin-like growth factor-I-induced alkaline phosphatase activity in osteoblasts. Horm Metab Res 37:270–274

    PubMed  CAS  Google Scholar 

  139. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  140. Norton WHJ, Rohr KB, Burnstock G (2000) Embryonic expression of a P2X3 receptor encoding gene in zebrafish. Mech Dev 99:149–152

    PubMed  CAS  Google Scholar 

  141. Othman T, Yan H, Rivkees SA (2003) Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia 44:166–172

    PubMed  Google Scholar 

  142. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    PubMed  CAS  Google Scholar 

  143. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    PubMed  CAS  Google Scholar 

  144. Peretto P, Merighi A, Fasolo A, Bonfanti L (1999) The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull 49:221–243

    PubMed  CAS  Google Scholar 

  145. Pooler AM, Guez DH, Benedictus R, Wurtman RJ (2005) Uridine enhances neurite outgrowth in nerve growth factor-differentiated pheochromocytoma cells. Neuroscience 134:207–214

    PubMed  CAS  Google Scholar 

  146. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  147. Rathbone MP, Middlemmis P, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59:663–690

    PubMed  CAS  Google Scholar 

  148. Resta V, Novelli E, DiVirgilio F, Galli-Resta L (2005) Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development 132:2873–2882

    PubMed  CAS  Google Scholar 

  149. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  150. Richter-Landsberg C, Maronde E, Besser A (1993) Ecto-5′-nucleotidase activity in PC 12 cells is synergistically modulated by nerve growth factor and 8-bromo-cAMP. Neurosci Res Commun 12:51–56

    CAS  Google Scholar 

  151. Robson SC, Wu Y, Sun XF, Knosalla C, Dwyer K, Enjyoji K (2005) Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin Thromb Hemost 31:217–233

    PubMed  CAS  Google Scholar 

  152. Ruan HZ, Moules E, Burnstock G (2004) Changes in P2X3 purinoceptors in sensory ganglia of the mouse during embryonic and postnatal development. Histochem Cell Biol 122:539–551

    PubMed  CAS  Google Scholar 

  153. Ryu JK, Choi BH, Hatori K, Heisel RL, Pelech SL, McLarnon JG, Kim SU (2003) Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J Neurosci Res 72:352–362

    PubMed  CAS  Google Scholar 

  154. Safiulina VF, Kasyanov AM, Sokolova E, Cherubini E, Giniatullin R (2005) ATP contributes to the generation of network-driven giant depolarizing potentials in the neonatal rat hippocampus. J Physiol (London) 565:981–992

    CAS  Google Scholar 

  155. Sato K, Malchinkhuu E, Muraki T, Ishikawa K, Hayashi K, Tosaka M, Mochiduki A, Inoue K, Tomura H, Mogi C, Nochi H, Tamoto K, Okajima F (2005) Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem 92:904–914

    PubMed  CAS  Google Scholar 

  156. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    PubMed  CAS  Google Scholar 

  157. Schafer KH, Saffrey MJ, Burnstock G (1995) Trophic actions of 2-chloroadenosine and bFGF on cultured myenteric neurones. Neuroreport 6:937–941

    Article  PubMed  CAS  Google Scholar 

  158. Scheibe RJ, Kuehl H, Krautwald S, Meissner JD, Mueller WH (2000) Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid. J Cell Biochem 76:420–436

    PubMed  CAS  Google Scholar 

  159. Schoen SW, Graeber MB, Tóth L, Kreutzberg GW (1988) 5′-Nucleotidase in postnatal ontogeny of rat cerebellum: a marker for migrating nerve cells? Dev Brain Res 39:125–136

    CAS  Google Scholar 

  160. Schoen SW, Kreutzberg GW (1995) Evidence that 5′-nucleotidase is associated with malleable synapses—an enzyme cytochemical investigation of the olfactory bulb of adult rats. Neuroscience 65:37–50

    PubMed  CAS  Google Scholar 

  161. Schoen SW, Kreutzberg GW, Singer W (1993) Cytochemical redistribution of 5′-nucleotidase in the developing cat visual cortex. Eur J Neurosci 5:210–222

    PubMed  CAS  Google Scholar 

  162. Schoen SW, Leutenecker B, Kreutzberg GW, Singer W (1990) Ocular dominance plasticity and developmental changes of 5′-nucleotidase distributions in the kitten visual cortex. J Comp Neurol 269:379–392

    Google Scholar 

  163. Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    PubMed  CAS  Google Scholar 

  164. Schwiebert EM, Zsembery A, Geibel JP (2003) Cellular mechanisms and physiology of nucleotide and nucleoside release from cells: current knowledge, novel assays to detect purinergic agonists, and future directions. In: Schwiebert EM (ed) Extracellular nucleotides and nucleosides: release, receptors, and physiological and pathophysiological effects. Academic, Amsterdam pp 31–58

    Google Scholar 

  165. Sellers LA, Simon J, Lundahl TS, Cousens DJ, Humphrey PPA, Barnard EA (2001) Adenine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J Biol Chem 19:16379–16390

    Google Scholar 

  166. Seri B, Manuel J, García-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    PubMed  Google Scholar 

  167. Seye CI, Yu NP, Gonzalez FA, Erb L, Weisman GA (2004) The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem 279:35679–35686

    PubMed  CAS  Google Scholar 

  168. Shukla V, Zimmermann H, Wang L, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80:600–610

    PubMed  CAS  Google Scholar 

  169. Skladchikova G, Ronn LCB, Berezin V, Bock E (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57:207–218

    PubMed  CAS  Google Scholar 

  170. Soltoff SP (1998) Related adhesion focal tyrosine kinase and epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. J Biol Chem 273:23110–23117

    PubMed  CAS  Google Scholar 

  171. Spychala J, Kitajewski J (2004) Wnt and beta-catenin signaling target the expression of ecto-5′-nucleotidase and increase extracellular adenosine generation. Exp Cell Res 296:99–108

    PubMed  CAS  Google Scholar 

  172. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550

    PubMed  CAS  Google Scholar 

  173. Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, Kempermann G (2004) Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46:41–52

    PubMed  Google Scholar 

  174. Stevens B, Fields RD (2000) Response of Schwann cells to action potentials in development. Science 287:2267–2271

    PubMed  CAS  Google Scholar 

  175. Stevens B, Ishibashi H, Chen JF, Fields RD (2004) Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol 1:23–34

    PubMed  Google Scholar 

  176. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    PubMed  CAS  Google Scholar 

  177. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad AA, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267:2524–2529

    PubMed  CAS  Google Scholar 

  178. Sugioka M, Fukuda Y, Yamashita M (1996) Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina. J Physiol 493:855–863

    PubMed  CAS  Google Scholar 

  179. Sugioka M, Zhou WL, Hofmann HD, Yamashita M (1999) Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci 17:135–144

    PubMed  CAS  Google Scholar 

  180. Thevananther S, Rivera A, Rivkees SA (2001) A1 adenosine receptor activation inhibits neurite process formation by rho kinase-mediated pathways. Neuroreport 12:3057–3063

    PubMed  CAS  Google Scholar 

  181. Tran PB, Ren DJ, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76:20–34

    PubMed  CAS  Google Scholar 

  182. Tulapurkar ME, Schafer R, Hanck T, Flores RV, Weisman GA, Gonzalez FA, Reiser G (2005) Endocytosis mechanism of P2Y2 nucleotide receptor tagged with green fluorescent protein: clathrin and actin cytoskeleton dependence. Cell Mol Life Sci 62:1388–1399

    PubMed  CAS  Google Scholar 

  183. Uckermann O, Grosche J, Reichenbach A, Bringmann A (2002) ATP-evoked calcium responses of radial glial (Müller) cells in the postnatal rabbit retina. J Neurosci Res 70:209–218

    PubMed  CAS  Google Scholar 

  184. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233

    PubMed  CAS  Google Scholar 

  185. Vogel M, Zimmermann H, Singer W (1993) Transient association of the HNK-1 epitope with 5′-nucleotidase during development of the cat visual cortex. Eur J Neurosci 5:1423–1425

    PubMed  CAS  Google Scholar 

  186. Wang M, Kong QM, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y2 nucleotide receptor interaction with αV integrin mediates astrocyte migration. J Neurochem 95:630–640

    PubMed  CAS  Google Scholar 

  187. Watts C, McConkey H, Anderson L, Caldwell M (2005) Anatomical perspectives on adult neural stem cells. J Anat 207:197–208

    PubMed  CAS  Google Scholar 

  188. Waymire JC, Mahuren JD, Jaje JM, Guilarte T, Coburn SP, Macgregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    PubMed  CAS  Google Scholar 

  189. Webb SE, Miller AL (2003) Calcium signalling during embryonic development. Nat Rev Mol Cell Biol 4:539–551

    PubMed  CAS  Google Scholar 

  190. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:1–15

    Google Scholar 

  191. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    PubMed  CAS  Google Scholar 

  192. Wirkner K, Franke H, Inoue K, Illes P (1998) Differential age-dependent expression of α2 adrenoceptor- and P2 purinoceptor-functions in rat locus coeruleus neurons. Naunyn–Schmiedeberg’s Arch Pharmacol 357:186–189

    CAS  Google Scholar 

  193. Wu LNY, Genge BR, Lloyd GC, Wuthier RE (1991) Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. J Biol Chem 266:1195–1203

    PubMed  CAS  Google Scholar 

  194. Xiang Z, Burnstock G (2005) Expression of P2X receptors on rat microglial cells during early development. Glia 52:119–126

    PubMed  Google Scholar 

  195. Xiang ZH, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    PubMed  CAS  Google Scholar 

  196. Xiang ZH, Burnstock G (2005) Changes in expression of P2X purinoceptors in rat cerebellum during postnatal development. Dev Brain Res 156:147–157

    CAS  Google Scholar 

  197. Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264

    PubMed  CAS  Google Scholar 

  198. Yoshioka T, Tanaka O (1989) Histochemical localization of Ca2+, Mg2+-ATPase of the rat cerebellar cortex during postnatal development. Int J Dev Neurosci 7:181–193

    PubMed  CAS  Google Scholar 

  199. Zhu YZ, Kimelberg HK (2004) Cellular expression of P2Y and α-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8-12 rat hippocampus. Dev Brain Res 148:77–87

    CAS  Google Scholar 

  200. Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    PubMed  CAS  Google Scholar 

  201. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn–Schmiedeberg’s Arch Pharmacol 362:299–309

    CAS  Google Scholar 

  202. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    CAS  Google Scholar 

  203. Zimmermann H (2001) Ecto-nucleotidases. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology. Purinergic and pyrimidergic signalling. Springer, Berlin Heidelberg New York, pp 209–250

    Google Scholar 

Download references

Acknowledgements

The support given by Deutsche Forschungsgemeinschaft (140/17-1; GRK 361) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, H. Nucleotide signaling in nervous system development. Pflugers Arch - Eur J Physiol 452, 573–588 (2006). https://doi.org/10.1007/s00424-006-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0067-4

Keywords

Navigation