Skip to main content
Log in

Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Hazelnut (Corylus avellana L.) is one of the most important tree nut crops in Europe. Germplasm accessions are conserved in ex situ repositories, located in countries where hazelnut production occurs. In this work, we used ten simple sequence repeat (SSR) markers as the basis to establish a core collection representative of the hazelnut genetic diversity conserved in different European collections. A total of 480 accessions were used: 430 from ex situ collections and 50 landraces maintained on-farm. SSR analysis identified 181 genotypes, that represented our whole hazelnut germplasm collection (WHGC). Four approaches (utilizing MSTRAT, Power Core, and Core Hunter’s single- and multi-strategy) based on the maximization (M) strategy were used to determine the best sampling method. Core Hunter’s multi-strategy, optimizing both allele coverage (Cv) and Cavalli-Sforza and Edwards (Dce) distance with equal weight, outperformed the others and was selected as the best approach. The final core collection (Cv-Dce30) comprised 30 entries (16.6% of genotypes). It recovered all SSR alleles and preserved parameter variations when compared to WHGC. Entries represented all six gene pools obtained from the population structure analysis of WHGC, further confirming the representativeness of Cv-Dce30. Our findings contribute towards improving the conservation and management of European hazelnut genetic resources and could be used to optimize future research by identifying a minimum number of accessions on which to focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data archiving statement

The Online Material 1 (EMS1, “xlsx” format) and Online Material 2 (EMS2, “pdf” format) are available in the Dryad Repository (https://datadryad.org/stash) as “Hazelnut SSR database: genetic profiles of the accessions, list of synonyms, and true-to-type genotypes” (https://doi.org/10.5061/dryad.cz8w9gj45).

https://datadryad.org/stash/share/fG-4pHenR4hQ_z5G7y18b43ytHnTLpy3w-F2lFJqljk

Code availability

Not applicable.

References

  • Bacchetta L, Rovira M, Tronci C, Aramini M, Drogoudi P, Silva AP, Solar A, Avanzato D, Botta R, Valentini N, Boccacci P (2015) A multidisciplinary approach to enhance the conservation and use of hazelnut Corylus avellana L. genetic resources. Genet Resour Crop Evol 62:649–663

    Article  Google Scholar 

  • Balas FC, Osuna MD, Domínguez G, Pérez-Gragera F, López-Corrales M (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genomes 10:703–710

    Article  Google Scholar 

  • Bassil NV, Botta R, Mehlenbacher SA (2005) Microsatellite markers in the hazelnut: isolation, characterization, and cross-species amplification in Corylus. J Am Soc Hort Sci 130:543–549

    Article  CAS  Google Scholar 

  • Bassil NV, Postman J, Hummer K, Botu M, Sezer A (2009) SSR fingerprinting panel verifies identities of clones in backup hazelnut collection of USDA genebank. Acta Hortic 845:95–102

    Article  CAS  Google Scholar 

  • Belaj A, del Carmen Dominguez-García M, Atienza SG, Martín Urdíroz N, De la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 16:76

    Google Scholar 

  • Bernard A, Barreneche T, Donkpegan A, Lheureux F, Dirlewanger E (2020) Comparison of structure analyses and core collections for the management of walnut genetic resources. Tree Genet Genomes 8:365–378

    Google Scholar 

  • Boccacci P, Botta R (2010) Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Sci Hortic 124:128–133

    Article  CAS  Google Scholar 

  • Boccacci P, Akkak A, Bassil NV, Mehlenbacher SA, Botta R (2005) Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Notes 5:934–937

    Article  CAS  Google Scholar 

  • Boccacci P, Akkak A, Botta R (2006) DNA-typing and genetic relationships among European hazelnut (Corylus avellana L.) cultivars using microsatellite markers. Genome 49:598–611

    Article  PubMed  CAS  Google Scholar 

  • Boccacci P, Rovira M, Botta R (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in northeastern Spain. HortScience 43:667–672

    Article  Google Scholar 

  • Boccacci P, Aramini M, Valentini N, Bacchetta L, Rovira M, Drogoudi P, Silva AP, Solar A, Calizzzano F, Erdorğan V, Cristofori V, Ciarmiello LF, Contessa C, Ferreira JJ, Marra FP, Botta R (2013) Molecular and morphological diversity of on-farm hazelnut (Corylus avellana L.) landraces from southern Europe and their role in the origin and diffusion of cultivated germplasm. Tree Genet Genomes 9:1465–1480

    Article  Google Scholar 

  • Botta R, Molnar TJ, Erdorğan V, Valentini N, Torello Marinoni D, Mehlenbacher S (2019). Hazelnut (Corylus spp.) Breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds.) Advances in plant breeding strategies: nut and beverage crops. Springer Nature, Switzerland, Volume 4, pp 157–219

  • De Beukelaer H, Smýkal P, Davenport GF, Fack V (2012) Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search. BMC Bioinformatics 13:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Guardo M, Scollo F, Ninot A, Rovira M, Hermoso JF, Distefano G, La Malfa S, Batlle I (2019) Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management. Tree Genet Genomes 15:41

    Article  Google Scholar 

  • Díez CM, Imperato A, Rallo L, Barranco D, Trujillo I (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221

    Article  Google Scholar 

  • El Bakkali A, Haouane H, Moukhli A, Costes E, Van Damme P, Khadari B (2013) Construction of core collections suitable for association mapping to optimize use of Mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8:e61265

    Article  PubMed  PubMed Central  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • FAO (1996) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAOSTAT (2021) http://www.fao.org/faostat/en/?#data. Accessed 06 May 2021

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Ferreira JJ, Garcia-González C, Tous J, Rovira M (2010) Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain. Plant Breed 129:435–441

    CAS  Google Scholar 

  • Gökirmak T, Mehlenbacher SA, Bassil NV (2009) Characterization of European hazelnut (Corylus avellana L.) cultivars using SSR markers. Genet Resour Crop Evol 56:147–172

    Article  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  PubMed  CAS  Google Scholar 

  • Gürcan K, Mehlenbacher SA, Erdoğan V (2010) Genetic diversity in hazelnut (Corylus avellana L.) cultivars from Black Sea countries assessed using SSR markers. Plant Breed 129:422–434

    Google Scholar 

  • Hummer KE (2001) Hazelnut genetic resources at the Corvallis repository. Acta Hortic 556:21–24

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Gwag CD, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Köksal AI (2000) Inventory of hazelnut research, germplasm and references. REU technical series. FAO-CIHEAM

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassois L, Denancé1 C, Ravon E, Guyader A, Guisnel R, Hibrand-Saint-Oyant L, Poncet C, Lasserre-Zuber P, Feugey L, Durel CE, (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827–844

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008). Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31

  • Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473

    Article  CAS  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Song Y, Liu L, Zhang M, Sun J, Zhang S, Wu1 J (2015) Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genet Genomes 11:128

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Resour Crop Evol 47:515–526

    Article  Google Scholar 

  • Mehlenbacher SA (2018) Advances in genetic improvement of hazelnut. Acta Hortic 1226:1–12

    Article  Google Scholar 

  • Miranda C, Urrestarazu J, Santesteban LG, Royo JB, Uribina V (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite markers. J Am Soc Hortic Sci 135:428–437

    Article  Google Scholar 

  • Muehlbauer MF, Honig JA, Capik JM, Vaiciunas JN, Molnar TJ (2014) Characterization of eastern filbert blight-resistant hazelnut germplasm using microsatellite markers. J Am Soc Hortic Sci 139:399–432

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ. Press, New York, NY

    Book  Google Scholar 

  • Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL, van Eeuwijk FA (2011) Statistical techniques for defining reference sets of accessions and microsatellite markers. Crop Sci 51(6):2401–2411

    Article  Google Scholar 

  • Odong TL, Jansen J, van Eeuwijk FA, van Hintum TJL (2013) Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet 126:289–305

    Article  PubMed  CAS  Google Scholar 

  • Öztürk SC, Balık Hİ, Balık SK, Kızılcı G, Duyar Ö, Doğanlar S, Frary A (2017) Molecular genetic diversity of the Turkish national hazelnut collection and selection of a core set. Tree Genet Genomes 13:113

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Barreneche T, Mattioni C, Villani F, Díaz-Hernández MB, Martín LM, Martín A (2017) Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genet Genomes 13:114

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software. Available from: http://darwin.cirad.fr/. Accessed 5 May 2021

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramasamy RK, Sumathy Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springerplus 3:431

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovira M, Hermoso JF, Romero AJ (2017) Performance of hazelnut cultivars from Oregon, Italy, and Spain, in Northeastern Spain. Horttechnology 27(5):631–638

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Štajner N, Tomić L, Ivanišević D, Korać N, Cvetković-Jovanović T, Beleski K, Angelova E, Maraš V, Javornik B (2014) Microsatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genet Genomes 10:127–140

    Article  Google Scholar 

  • Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF (2009) Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics 10:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas MR, Matsumoto S, Cain P, Scott NS (1993) Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification. Theor Appl Genet 86:173–180

    Article  PubMed  CAS  Google Scholar 

  • Thompson MM, Lagerstedt HB, Mehlenbacher SA (1996) Hazelnuts. In: Janick J, Moore JN (eds) Fruit breeding: nuts, vol 3. Wiley, New York, pp 125–184

    Google Scholar 

  • Valentini N, Calizzano F, Boccacci P, Botta R (2014) Investigation on clonal variants within the hazelnut (Corylus avellana L.) cultivar ‘Tonda Gentile delle Langhe.’ Sci Hortic 165:303–310

  • van Hintum, TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin No. 3. International Plant Genetic Resources Institute, Rome

  • Wagner HW, Sefc KM (1999) IDENTITY 4.0. Centre for Applied Genetics, University Agricultural Sciences, Vienna

  • Wang Y, Zhang J, Sun H, Ning N, Yang L (2011) Construction and evaluation of a primary core collection of apricot germplasm in China. Sci Hortic 128:311–319

    Article  Google Scholar 

Download references

Acknowledgements

In memory of my dad, Ugo Boccacci (6 October 1946–19 March 2021). I thank my colleagues Giorgio Gambino, Walter Chitarra, Amedeo Moine, Luca Nerva, Floriana Nuzzo, Chiara Pagliarani, and Irene Perrone for encouraging me to finish this work.

Funding

This work was funded by AGRI GEN RES Community Program (European Commission, Directorate-General for Agriculture and Rural Development, under Council Regulation (EC) No. 870/2004)–SAFENUT project (“Safeguard of almond and hazelnut genetic resources: from traditional uses to modern agro-industrial opportunities”), AGRI GEN RES 068.

Author information

Authors and Affiliations

Authors

Contributions

Paolo Boccacci conceived the study and written the manuscript. Paolo Boccacci, Maria Aramini, Daniela Torello Marinoni, Nadia Valentini, Mercè Rovira, Anita Solar, and Jean-Paul Sarraquigne collected vegetal material from the collection fields. Paolo Boccacci, Maria Aramini, Matthew Ordidge, and Daniela Torello Marinoni performed SSR analyses. Paolo Boccacci and Theo van Hintum performed data elaborations. Loretta Bacchetta coordinated and Roberto Botta co-coordinated the SAFENUT project. Paolo Boccacci and Matthew Ordidge revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Paolo Boccacci.

Ethics declarations

Competing interests

All authors declare that they have no competing interests.

Additional information

Communicated by J. Beaulieu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 238 kb)

Supplementary file2 (PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccacci, P., Aramini, M., Ordidge, M. et al. Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut (Corylus avellana L.) accessions from European germplasm repositories. Tree Genetics & Genomes 17, 48 (2021). https://doi.org/10.1007/s11295-021-01526-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01526-7

Keywords

Navigation