Skip to main content
Log in

Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Ex situ germ plasm collections of woody crops are necessary to ensure the optimal use of plant genetic resources. The fig tree (Ficus carica L.) germ plasm bank, consisting of 229 accessions, is located in Centro de Investigación ‘La Orden’. Despite great progress in conservation, ex situ collections face size and organization problems. Core collections obtained from structured samples of bigger collections are a useful tool to improve germ plasm management. In this work, we used simple sequence repeat (SSR) markers to establish a core collection in this underutilised Mediterranean fruit tree species. Four approaches have been carried out (random sampling, maximization, simulated annealing and stepwise clustering) to determine the best method to develop a core collection in this woody plant. The genetic diversity obtained with each subset was compared with that of the complete collection. It was found that the most efficient way to achieve the maximum diversity was the maximization strategy, which, with 30 accessions, recovers all the SSR alleles and does not show significant differences in allele frequency distribution in any of the loci or in the variability parameters (H O, H E) between the whole and core collections. Thus, this core collection, a representative of most fig diversity conserved in the germ plasm bank, could be used as a basis for plant material exchange among researchers and breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson WF, Holbroook CC, Culbreath AK (1996) Screening the peanut core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Article  Google Scholar 

  • Aradhya MK, Stover E, Velasco D, Koehmstedt A (2010) Genetic structure an differentiation in cultivated fig (Ficus carica L.). Genetica 138:681–694

    Article  CAS  PubMed Central  Google Scholar 

  • Belaj A, Dominguez-García MC, Attienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DarTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378

    Article  Google Scholar 

  • Berg CC (2003) Flora Malesiana precursor for treatment of Moraceae 1: the main subdivision of Ficus: the subgenera. Blumea 48:167–178

    Google Scholar 

  • Bisht IS, Mahajan RK, Lokknathan TR, Agrawal RC (1998) Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Gent Resour Crop Evol 45:325–335

    Article  Google Scholar 

  • Boukema IW, van Hintum TJL (1994) Brassica oleracea, a case of an integrated approach to genetic resources conservation. In: Balfourier F, Perretant MR (eds) Evaluation and exploitation of genetic resources: pre-breeding. Porc. Genetic Resources Section Meeting of Eucarpia, Clermont-Ferrand

    Google Scholar 

  • Brown AHD, Schoen DJ, Speer SS (1987) Designation of a “core” collection of perennial Glycine. Soybean Gent Newsl 14:59–70

    Google Scholar 

  • Condit IJ (1955) Fig varieties: a monograph. Hilgardia 23:323–538

    Google Scholar 

  • Diwan N, McIntosh MS, Bauchan GR (1995) Developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  CAS  Google Scholar 

  • Eisen GA (1901) The fig: history, culture and curing with a descriptive catalogue of the known varieties of fig. Bulletin no. 9. U.S. Department of Agriculture, Division of Pomology, Washington DC

    Google Scholar 

  • Erksine W, Muehlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor Appl Genet 83:119–125

    Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • FAO (1996) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAOSTAT (2013) faostat.fao.org

  • Flaishman M, Rodov V, Stover E (2008) The fig: botany, horticulture and breeding. Horticul Revs 34:113–196

    CAS  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Frankel OH, Brownn AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Allen and Unwin, Winchester

    Google Scholar 

  • Giraldo E, Viruel MA, López-Corrales M, Hormaza JI (2005) Characterisation and cross-species transferability of microsatellites in common fig (Ficus carica L.). J Hortic Sci Biotech 80(2):217–224

    CAS  Google Scholar 

  • Giraldo E, López-Corrales M, Hormaza JI (2008a) Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. J Amer Sco Hort Sci 133(1):69–77

    CAS  Google Scholar 

  • Giraldo E, Hormaza JI, López-Corrales M (2008b) Selection of morphological quantitative variables in the characterization of Ficus carica L. Acta Hort 798:103–108

    Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: at algorithm for building germ plasm core collection by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Noirot M, Rao KEP, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random and non-random sampling procedures A. Using morpho-agronomical and passport data. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Guerrero VM, Gornés (2000) Colonización humana en ambientes insulares: interacción con el medio y adaptación cultural. Universitat Illes Balears, Palma, Spain

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linnean Soc 58:247–276

    Article  Google Scholar 

  • Hu J, Zhu J, Xu HM (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Kappel F, Granger A, Hrotkó K, Schuster M (2012) Cherry. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, USA, pp 459–504

  • Khadari B, Kjellberg F (2009) Tracking the genetic signature to identify fig origins: insights for evolution before and during domestication processes. Acta Horticulturae (Forthcoming) IV International Symposium on Fig. Méknes, Morocco

  • Khadari B, Hochu I, Santoni S, Oukabli A, Ater M, Roger JP, Kjellberg F (2001) Which molecular markers are best suited to identify fig cultivars: a comparison of RAPD, ISSR and microsatellite markers. Acta Horticult 605:69–75

    Google Scholar 

  • Khadari B, Grout C, Santoni S, Kjellberg F (2005) Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: a study using mtDNA RFLP. Gen Resour Crop Ev 52:97–109

    Article  CAS  Google Scholar 

  • Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science 312:1372–1374

    Article  CAS  Google Scholar 

  • Kjellberg F, Gouyon PH, Igrahim M, Raymond M, Valdeyron G (1987) The stability of the symbiosis between dioecious figs and their pollinators: a study of Ficus carica L. and Blastophaga psenes L. Int J Org Evol 41:693–704

    Article  Google Scholar 

  • Li TH, Li YX, Li ZC, Zhang HL, Qi YW, Wang T (2008) Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica L.). J Integr Plant Biol 50(1):102–110

    Article  CAS  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 47:515–526

    Google Scholar 

  • López A (2000) El poblament inicial de l’illa de Menorca. In: Guerrero VM, Gornés S (eds) Colonización humana en medios insulares. Interacción con el medio y adaptación cultural. Universitat Illes Balears, Palma, pp 195–214

    Google Scholar 

  • López-Corrales M, Balas F, Domínguez G, Osuna MD, Serradilla MJ, Pérez F (2012) Protocolo de Incorporación de nuevas accesiones al banco de germoplasma de higuera. Actas de Horticultura 62:227–228

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 70:3321–3323

    Article  Google Scholar 

  • Potts SM, Han Y, Khan MA et al (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Rep 30:827–837

    Article  Google Scholar 

  • Schoen DJ, Brown AHD (1995) Maximizing genetic diversity in core collections of relatives of crop species. In: Hodgkin T, Brown ADH, van Hintum TJL (eds) Core collection of plant genetic resources. Wiley, Chichester, pp 55–76

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  CAS  Google Scholar 

  • van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2003) Colecciones núcleo de recursos fitogenéticos. Boletín Técnico No. 3 del IPGRI. International Plant Genetic Resources Institute, Rome, Italy

  • Watson L, Dallwitz MJ (2004) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. http://delta-intkey.com/angio/www/inedx.htm. Accessed 29 June 2007

  • Yonezawa K, Nomura T, Morishima H (1995) Sampling strategies for use in stratified germplasm collections. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester

    Google Scholar 

  • Zhang X, Zhao Y, Cheng Y, Feng X, Guo Q, Zhou M, Hodgkin T (2000) Establishment of sesame germplasm core collection in China. Genet Resour Crop Evol 47:273–279

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Spanish Ministry of Economy and Competitiveness–European Regional Development Fund (Project Grant RF2010-00009) and agreement with the Spanish Ministry of Agriculture, Food and Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. López-Corrales.

Additional information

Communicated by A. Dandekar

Data archiving statement

Data is deposited in the Dryad repository at http://dx.doi.org/10.5061/dryad.2r107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balas, F.C., Osuna, M.D., Domínguez, G. et al. Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genetics & Genomes 10, 703–710 (2014). https://doi.org/10.1007/s11295-014-0715-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0715-3

Keywords

Navigation