Skip to main content
Log in

Genome-wide association study for apple flesh browning: detection, validation, and physiological roles of QTLs

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Flesh browning after cutting or bruising reduces the commercial value of apple fruit. Here, we investigated the genetic factors that regulate flesh browning (at 15 min and 24 h after grating) by a genome-wide association study (GWAS) of 24 sib-families (468 genotypes). Three quantitative trait loci (QTLs) were detected on chr5, chr16, and chr17. Their effects were estimated in a germplasm collection of 86 cultivars and selection lines: flesh browning differed with the genotypes of SNPs linked to these QTLs, respectively explaining 31.3%, 3.3%, and 23.7% of phenotypic variance at 15 min, and 36.7%, 11.0%, and 14.8% of variance at 24 h. Homozygous recessive alleles at these QTLs were associated with low browning. ‘Aori 27’, a rare cultivar that never browns even 5 days after grating, was homozygous recessive at all three QTLs. Browning was clearly lower in cultivars that were homozygous recessive at two QTLs, rather than one or none. We analyzed browning-related traits—polyphenol oxidase (PPO) activity, total polyphenol content, and juice browning—by GWAS using the germplasm collection. A QTL for PPO activity was detected on chr5, where PPO genes are located; and QTLs for total polyphenol content and juice browning were detected on chr16, where leucoanthocyanidin reductase gene is located. No QTLs for the browning-related traits were detected on chr17. These results indicate that the juice browning is mainly regulated by polyphenol content (chr16 QTL), whereas the flesh browning is also regulated by additional factors, including PPO activity (chr5 QTLs). These findings will facilitate development of non-browning apple cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    Article  CAS  PubMed  Google Scholar 

  • Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdak S, Di Guardo M, Salvi S, Jansen J, Viola R, Gut I, Laurens F, Chagné D, Velasco R, van de Weg E, Troggio M (2014) Development and validation of a 20 K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus ×domestica Borkh.). PLoS One 9:e110377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, van de Weg E, Davassi A, Laurens F, Velasco R, Durel CE, Troggio M (2016) Development and validation of the Axiom® Apple480K SNP genotyping array. Plant J 86:62–74

    Article  CAS  PubMed  Google Scholar 

  • Brown S (2012) Apple. In: Fruit breeding. Springer, Boston, pp 329–367

    Chapter  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990

    Article  Google Scholar 

  • Carter N (2012) Petition for determination of nonregulated status: Arctic™ Apple (Malus ×domestica) events GD743 and GS784. United States Department of Agriculture—Animal and Plant Health Inspection Service

  • Chagné D, Crowhurst RN, Troggio M, Davy MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, van de Weg E, Gardiner SE, Bassil N, Peace C (2012a) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7:e31745

    Article  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012b) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Coseteng MY, Lee CY (1987) Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. J Food Sci 52:985–989

    Article  CAS  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus ×domestica Borkh.). J Exp Bot 61:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Goffreda JC, Korban SS (1994) ‘GoldRush’ apple. Hortsci 29:827–828

    Article  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guérif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904

    Article  CAS  PubMed  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • Endelman JB, Jannink JL (2012) Shrinkage estimation of the realized relationship matrix. Gen Genom Genet 2:1405–1413

    Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Folin O, Denis W (1915) A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J Biol Chem 22:305–308

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guardo MD, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F (2013) A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus ×domestica Borkh.). PLoS One 8:e78004

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T (2016) Biotechnology and apple breeding in Japan. Breed Sci 66:18–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Fruit breeding Vol. 1: tree and tropical fruits. Wiley, New York

    Google Scholar 

  • Joshi APK, Rupasinghe HPV, Pitts NL, Khanizadeh S (2007) Biochemical characterization of enzymatic browning in selected apple genotypes. Can J Plant Sci 87:1067–1074

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Khan SA, Chibon PY, de Vos RC, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RGF, van de Weg E, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63:2895–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanizadeh S, Groleau Y, Levasseur A, Charles MT, Tsao R, Yang R, DeEll J, Hampson CR, Toivonen P (2006) ‘SJCA38R6A74’ (Eden). Hortic Sci 41:1513–1515

    Google Scholar 

  • Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagné D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kim H, Nishitani C, Terakami S, Yamamoto T (2014) Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci 64:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T, Kawahara Y, Itoh R, Itoh T, Katayose Y, Kanamori H, Matsumoto T, Mori S, Sasaki H, Matsumoto T, Nishitani C, Terakami S, Yamamoto T (2016) Genomic dissection of a ‘Fuji’ apple cultivar: re-sequencing, SNP marker development, definition of haplotypes, and QTL detection. Breed Sci 66:499–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunihisa M, Takita Y, Yamaguchi N, Okada H, Sato M, Komori S, Nishitani C, Terakami S, Yamamoto T (2019) The use of a fertile doubled haploid apple line for QTL analysis of fruit traits. Breed Sci 69:410–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Leforestier D, Ravon E, Muranty H, Cornille A, Lemaire C, Giraud T, Durel CE, Branca A (2015) Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 8:650–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus ×domestica Borkh.). Plant Mol Biol 52:511–526

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus ×domestica Borkh.). J Exp Bot 63:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012) Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, Moffett P, Chao CT, Schwaninger H, Fazio G, Zhong GY, Myles S (2016) Genome to phenome mapping in apple using historical data. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.11.0113

  • Moriya S, Kunihisa M, Okada K, Iwanami H, Iwata H, Minamikawa M, Katayose Y, Matsumoto T, Mori S, Sasaki H, Matsumoto T, Nishitani C, Terakami S, Yamamoto T, Abe K (2017a) Identification of QTLs for flesh mealiness in apple (Malus × domestica Borkh.). Hortic J 86:159–170

    Article  CAS  Google Scholar 

  • Moriya S, Kunihisa M, Okada K, Shimizu T, Honda C, Yamamoto T, Muranty H, Denancé C, Katayose Y, Iwata H, Abe K (2017b) Allelic composition of MdMYB1 drives red skin color intensity in apple (Malus × domestica Borkh.) and its application to breeding. Euphytica 213:78

    Article  Google Scholar 

  • Murata M, Noda I, Homma S (1995) Enzymatic browning of apples on the market: relationship between browning, polyphenol content, and polyphenol oxidase. J Jpn Soc Food Sci Technol 42:820–826

    Article  CAS  Google Scholar 

  • Murata M, Tsurutani M, Hagiwara S, Homma S (1997) Subcellular location of polyphenol oxidase in apples. Biosci Biothechnol Biochem 61:1495–1499

    Article  CAS  Google Scholar 

  • Nishio S, Hayashi T, Yamamoto T, Yamada M, Takada N, Kato H, Nishitani C, Saito T (2016) Validation of molecular markers associated with fruit ripening day of Japanese pear (Pyrus pyrifolia Nakai) using variance components. Sci Hortic 199:9–14

    Article  CAS  Google Scholar 

  • Noro S, Sato T, Kon T, Akada T, Kudo T, Kasai S (2009) Non-browning apple, method for producing the same, and drink and food using the same. U.S. Patent 8704050 B2 2014-4-22

  • Orcheski B, Parker R, Brown S (2015) Pale green lethal disorder in apple (Malus) is caused by a mutation in the PHYLLO gene which is essential for phylloquinone (vitamin K1) biosynthesis. Tree Genet Genomes 11:131

    Article  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Fischer M (2009) Breeding apple (Malus ×domestica Borkh). Breeding Plantation Tree Crops: Temperate Species. Springer New York: 33–81

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11:8

    Article  Google Scholar 

  • Sannomaru T, Katayama O, Kashimura Y, Kaneko K (1998) Effects of polyphenol content and polyphenoloxidase activity on browning reaction of apple fruits. J Jpn Soc Food Sci Technol 45:28–36

    Article  CAS  Google Scholar 

  • Sun R, Li H, Zhang Q, Chen D, Yang F, Zhao Y, Wang Y, Han Y, Zhang X, Han Z (2014) Mapping for quantitative trait loci and major genes associated with fresh-cut browning in apple. Hortic Sci 49:25–30

    Google Scholar 

  • Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747

    Article  PubMed  PubMed Central  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Tazawa J, Oshino H, Kon T, Kasai S, Kudo T, Hatsuyama Y, Fukasawa-Akada T, Yamamoto T, Kunihisa M (2019) Genetic characterization of flesh browning trait in apple using the non-browning cultivar ‘Aori 27’. Tree Genet Genomes 15:49

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus ×domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

    Book  Google Scholar 

  • Xu K, Wang A, Brown S (2012) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Mol Breed 30:899–912

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bil IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr. Shigeki Moriya (Institute of Fruit Tree and Tea Science, NARO), Dr. Hiroyoshi Iwata (Graduate School of Agricultural and Life Sciences, The University of Tokyo), and Dr. Yoshihiro Kawahara (Institute of Agrobiological Sciences, NARO), for their kind support regarding the execution of biostatistics programs.

Funding

This study was partly supported by the Ministry of Agriculture, Forestry, and Fisheries of Japan for “Genomics-based Technology for Agricultural Improvement, DHR2,” and by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP2), “Technologies for Smart Bio-industry and Agriculture” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Tazawa.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Data archiving statement

The source of all SNP markers used in this study has been published by Bianco et al. (2014).

Additional information

Communicated by D. Chagné

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 780 kb)

ESM 2

(XLSX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunihisa, M., Hayashi, T., Hatsuyama, Y. et al. Genome-wide association study for apple flesh browning: detection, validation, and physiological roles of QTLs. Tree Genetics & Genomes 17, 11 (2021). https://doi.org/10.1007/s11295-021-01492-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-021-01492-0

Keywords

Navigation