Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia)

Abstract

Dehydrins (DHNs) are a complex family of plant proteins that play an important role in protection of higher plant cells from dehydration and desiccation damage during environmental stresses, such as drought, high salinity, and low temperature. However, information on DHN genes of Asian pear (Pyrus pyrifolia), an economically important fruit crop grown in temperate regions in East Asia, e.g., China and Japan, is limited. To gain insights into this gene family in pear and to elucidate their roles in floral buds under low-temperature conditions, we performed a genome-wide identification, characterization, and expression analysis of DHN genes. Seven PpDHN genes were identified. Sequence alignment analysis of all putative proteins from these genes showed that all of the proteins contained a typical K-domain. These genes were categorized into SKn, YnSKn, YKn, and Kn groups based on gene characterization and phylogenetic relationships. Hierarchical cluster analyses showed that in non-stressed pear, PpDHN genes were expressed in all vegetative tissues except young leaves and shoot tips, in which PpDHN1, PpDHN2, and PpDHN4 were not expressed. Transcript levels of four PpDHN genes increased significantly in floral buds in response to low-temperature treatment, which indicated that they play important roles during stress adaptation. This study provides evidence that the family of pear DHN genes may function in tissue development and stress responses. The data will be valuable for further studies of the functions of DHN genes under different stress conditions in pear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allagulova C, Gimalov F, Shakirova F, Vakhitov V (2003) The plant dehydrins: structure and putative functions. Biochem Mosc 68(9):945–951. doi:10.1023/A:1026077825584

    CAS  Article  Google Scholar 

  2. Alsheikh MK, SVensson J, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122. doi:10.1111/j.1365-3040.2005.01348.x

    CAS  Article  Google Scholar 

  3. Arora R, Wisniewski ME (1994) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch) II. A 60-kilodalton bark protein in cold-acclimated tissues of peach 1 s heat stable and related to the dehydrin family of proteins. Plant Physiol 105:95–101. doi:10.1104/pp. 105.1.95

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. Menlo Park, California, AAAI Press, pp 28-36

  5. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. doi:10.1093/nar/gkl198

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24. doi:10.1104/pp.108.120725

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124. doi:10.1007/s11103-008-9304-x

    CAS  Article  PubMed  Google Scholar 

  8. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins and associations with phenotypic traits. New Phytol 137:61–74. doi:10.1046/j.1469-8137.1997.00831.x

    CAS  Article  Google Scholar 

  9. Choi DW, Zhu B, Close T (1999) The barley (Hordeum vulgare L.) dehydrinmultigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 DHN genes of cv Dicktoo. Theor Appl Genet 98(8):1234–1247. doi:10.1007/s001220051189

    CAS  Article  Google Scholar 

  10. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803. doi:10.1111/j.1399-3054.1996.tb00546.x

    CAS  Article  Google Scholar 

  11. Dhanaraj AL, Slovin JP, Rowland LJ (2005) Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14kDa dehydrin of blueberry. Plant Sci 168:949–957. doi:10.1016/j.plantsci.2004.11.007

    CAS  Article  Google Scholar 

  12. Eriksson SK, Harryson PD (2011) Dehydrin: molecular biology, structure and function. In: Beck B, Bartels D (eds) Plant desiccation tolerance, eds Lüttge U. Springer, Berlin, pp 289–305. doi:10.1007/978-3-642-19106-0

    Google Scholar 

  13. Falavigna VD, Miotto YE, Porto DD, Anzanello R, Santos HP, Fialho FB, Margis-Pinheiro M, Pasquali G, Revers LF (2015) Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. Physiol Plant. doi:10.1111/ppl.12338

    PubMed  Google Scholar 

  14. Farrant JM, Bailly C, Leymarie J, Hamman B, Come D, Corbineau F (2004) Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiol Plant 120:563–574. doi:10.1111/j.0031-9317.2004.0281.x

    CAS  Article  PubMed  Google Scholar 

  15. Garnczarska M, Zalewski T, Wojtyla Ł (2008) A comparative study of water distribution and dehydrin protein localization in maturing pea seeds. J Plant Physiol 165:1940–1946. doi:10.1016/j.jplph.2008.04.016

    CAS  Article  PubMed  Google Scholar 

  16. Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold regulated genes of Arabidopsis thaliana. Plant Mol Biol 18:13–21. doi:10.1007/BF00018452

    CAS  Article  PubMed  Google Scholar 

  17. Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541. doi:10.1111/j.1365-3040.2009.01947.x

    CAS  Article  PubMed  Google Scholar 

  18. Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin C, McCarthy J (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot 97:755–765. doi:10.1093/aob/mcl032

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. doi:10.1093/bioinformatics/btu817

    PubMed Central  Article  PubMed  Google Scholar 

  20. Hughes S, Graether SP (2011) Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci 20:42–50. doi:10.1002/pro.534

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  21. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118. doi:10.1186/1471-2164-9-118

    PubMed Central  Article  PubMed  Google Scholar 

  22. Jensen AB, Goday A, Figueras M, Jessop AC, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697. doi:10.1046/j.1365-313X.1998.00069.x

    CAS  Article  PubMed  Google Scholar 

  23. Karlson DT, Zeng Y, Stirm VE, Joly RJ, Ashworth EN (2003) Photoperiodic regulation of a 24-kd dehydrin-like protein in red-osier dogwood (Cornus sericea l.) in relation to freeze-tolerance. Plant Cell Physiol 44:25–34. doi:10.1093/pcp/pcg006

    CAS  Article  PubMed  Google Scholar 

  24. Kim SY, Nam KH (2010) Physiological roles of ERD10 in abiotics tresses and seed germination of Arabidopsis. Plant Cell Rep 29:203–209. doi:10.1007/s00299-009-0813-0

    CAS  Article  PubMed  Google Scholar 

  25. Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to an ionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514. doi:10.1104/pp.109.136697

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. Kosova K, Vitamvas P, Prásil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51(4):601–617. doi:10.1007/s10535-007-0133-6

    CAS  Article  Google Scholar 

  27. Koster KL, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiol 98:108–113. doi:10.1104/pp.98.1.108

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cell 19(2):212–218

    CAS  Google Scholar 

  29. Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768. doi:10.1007/s11033-012-1968-2

    CAS  Article  PubMed  Google Scholar 

  30. Lim CC, Krebs SL, Arora R (2014) Cold hardiness increases with age in juvenile Rhododendron populations. Front Plant Sci 5:542. doi:10.3389/fpls.2014.00542

    PubMed Central  Article  PubMed  Google Scholar 

  31. Liu CC, Li CM, Liu BG, Ge SJ, Dong XM, Li W, Zhu HY, Wang BC, Yang CP (2012a) Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Mol Biol Report 30:848–859. doi:10.1007/s11105-011-0395-1

    CAS  Article  Google Scholar 

  32. Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y (2012b) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 13:700. doi:10.1186/1471-2164-13-700

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  34. Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279. doi:10.1023/A:1006469128280

    CAS  Article  PubMed  Google Scholar 

  35. Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, Gómez-Anduro G, Jiménez-Bremont JF (2011) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta 235(3):565–578. doi:10.1007/s00425-011-1531-8

    Article  PubMed  Google Scholar 

  36. Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDHN5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDHN5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597. doi:10.1111/j.1399-3054.2008.01164.x

    CAS  Article  PubMed  Google Scholar 

  37. Perdiguero P, Barbero MC, Cervera MT, Soto A, Collada C (2012) Novel conserved segments are associated with differential expression patterns for Pinaceae dehydrins. Planta 236:1863–1874. doi:10.1007/s00425-012-1737-4

    CAS  Article  PubMed  Google Scholar 

  38. Puhakainen T, Hess MW, Kela PM, Svensson J, Heino P, Palva ET (2004) Over expression of multiple dehydrin genes enhances tolerance to freezing. Plant Mol Biol 54:743–753. doi:10.1023/B:PLAN.0000040903.66496.a4

    CAS  Article  PubMed  Google Scholar 

  39. Pulla RK, Kim YJ, Kim MK, Senthil KS, In JG, Yang DC (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses. BMB Rep 41(4):338–343

    CAS  Article  PubMed  Google Scholar 

  40. Riera M, Figueras M, Lopez C, Goday A, Pages M (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A 101:9879–9884. doi:10.1073/pnas.0306154101

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. Rorat T (2006) Plant dehydrins: tissue location, structure and function. Cell Mol Biol Lett 11:536–556. doi:10.2478/s11658-006-0044-0

    CAS  Article  PubMed  Google Scholar 

  42. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–8

    CAS  PubMed  Google Scholar 

  43. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  44. Shekhawat UKS, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234(5):915–932. doi:10.1007/s00425-011-1455-3

    CAS  Article  PubMed  Google Scholar 

  45. Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405. doi:10.1007/s10142-008-0081-z

    CAS  Article  PubMed  Google Scholar 

  46. Trygve Devold Kjellsen TD, Yakovlev IA, Fossdal CG, Strimbeck GR (2013) Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol 33:1354–1366. doi:10.1093/treephys/tpt105

    Article  PubMed  Google Scholar 

  47. Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Sleeping beauties—dormancy and resistance in harsh environments, 21st edn. Springer, Berlin, pp 91–108. doi:10.1007/978-3-642-12422-8_6

    Google Scholar 

  48. Velasco-Conde T, Yakovlev I, Majada J, Aranda I, Johnsen Ø (2012) Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet Genomes 8:957–973. doi:10.1007/s11295-012-0476-9

    Article  Google Scholar 

  49. Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420. doi:10.1016/j.plantsci.2006.10.004

    CAS  Article  Google Scholar 

  50. Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plant 127:167–181. doi:10.1111/j.1399-3054.2006.00672.x

    CAS  Article  Google Scholar 

  51. Wisniewski M, Close T, Artlip T, Arora R (1996) Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiol Plant 96:496–505. doi:10.1111/j.1399-3054.1996.tb00464.x

    CAS  Article  Google Scholar 

  52. Wisniewski ME, Bassett CL, Renaut J, Farrell R Jr, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    CAS  Article  PubMed  Google Scholar 

  53. Wu J, Wang Z, Shi Z, et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396--408

  54. Xu J, Zhang Y, Guan Z, Wei W, Han L, Chai T (2008) Expression and function of two dehydrins under environmental stresses in Brassica juncea L. Mol Breed 21:431–438. doi:10.1007/s11032-007-9143-5

    CAS  Article  Google Scholar 

  55. Xu H, Yang Y, Xie L, Li X, Feng C, Chen J, Xu C (2014) Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica). PLoS ONE 9(1):e87575. doi:10.1371/journal.pone.0087575

    PubMed Central  Article  PubMed  Google Scholar 

  56. Yakovlev IA, Asante DKA, Fossdal CG, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228:459–472. doi:10.1007/s00425-008-0750-0

    CAS  Article  PubMed  Google Scholar 

  57. Yamasaki Y, Koehler G, Blacklock BJ, Randall SK (2013) Dehydrin expression in soybean. Plant Physiol Biochem 70:213–220. doi:10.1016/j.plaphy.2013.05.013

    CAS  Article  PubMed  Google Scholar 

  58. Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140. doi:10.1186/1471-2229-12-140

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  59. Zhang D, Yu B, Bai J, Qian M, Shu Q, Su J, Teng Y (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53–59. doi:10.1016/j.scienta.2011.10.025

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The research was supported by the Earmarked Fund for China Modern Agro-industry Technology Research System (CARS-29).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuanwen Teng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data archiving statement

The pear DHN gene family sequences have been submitted to National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/WebSub/?tool=genbank) and the accession numbers been shown in Table 2.

Additional information

This article is part of the Topical Collection on Gene Expression

Communicated by D. Chagné

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Niu, Q., Qian, M. et al. Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia). Tree Genetics & Genomes 11, 110 (2015). https://doi.org/10.1007/s11295-015-0938-y

Download citation

Keywords

  • Asian pear
  • Dehydrin genes
  • Phylogenetic tree
  • Expression
  • Low-temperature treatment