Skip to main content

Dehydrins: Molecular Biology, Structure and Function

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Plants can activate an array of various rescue responses when they have to survive environmental stresses such as low temperature or drought. One such response is the synthesis of various stress proteins such as chaperones and late embryonic abundant (LEA) proteins. Although the precise functions of many of the LEA proteins are unknown, the general hypothesis is that they stabilise membranes, proteins or other cellular structures by preventing stress denaturation.

The dehydrins, the group 2 LEA proteins, are plant-specific proteins that are highly expressed in response to low temperature, drought, high salt or to application of abscisic acid (ABA). Characteristic for the dehydrins are some highly conserved and repetitively scattered sequences of 7–17 amino acids called the K-, S-, Y- and lysine-rich segments.

The dehydrins are highly hydrophilic proteins and belong to the intrinsically disordered proteins, a class of proteins that lack a fixed 3D structure. Most disordered proteins can switch between non-functional disordered states to a functional state by a disorder-to-order transition. This conformational change is commonly induced upon binding to different cellular targets such as membranes or other proteins. Even though the molecular function of the dehydrins is yet unknown, there may be a relationship between a transiently formed structure and physiological function. Many of the proposed functions of dehydrins, for example chaperone activity, stabilising of membranes or metal chelating, involve interactions with cellular targets. However, to be able to structurally respond, the dehydrins must remain disordered in the changing and crowded interior of stressed plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  PubMed  CAS  Google Scholar 

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Bochicchio B, Tamburro AM (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14:782–792

    Article  PubMed  CAS  Google Scholar 

  • Bokor M, Csizmok V, Kovacs D, Banki P, Friedrich P, Tompa P, Tompa K (2005) NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J 88:2030–2037

    Article  PubMed  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5

    Article  PubMed  Google Scholar 

  • Bravo L, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi M, Close T, Corcuera L (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 118:262–269

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked difference in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959 enhance dehydration tolerance of transgenic rice (Oryza sativa) L. Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  • Choi D-W, Zhu B, Close T (1999) The barely (Hordeum vulgare L.) dehydrins multigene family: sequences, allele types, chromosome assignments and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart E, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett 344:20–24

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  PubMed  CAS  Google Scholar 

  • Dure L (1993a) Structural motifs in LEA proteins

    Google Scholar 

  • Dure L 3rd (1993b) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Dure L 3rd, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Dure L, Chlan C (1981) Developmental biochemistry of cottonseed embryogenesis and germination: XII. Purification and properties of principal storage proteins. Plant Physiol 68:180–186

    Article  PubMed  CAS  Google Scholar 

  • Dure L, Crouch M, Harada J, Ho T-H, Mundy J, Quatrano R, Thomas T, Sung Z (1989) Common amino acid sequence domains among the Lea proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Dure L, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol 68:187–194

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2001a) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2001b) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  PubMed  CAS  Google Scholar 

  • Figueras M, Pujal J, Saleh A, Save R, Pages M, Goday A (2004) Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance. Ann Appl Biol 144:251–257

    Article  CAS  Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  • Flaugh SL, Lumb KJ (2001) Effects of macromolecular crowding on the intrinsically disordered proteins c-Fos and p27(Kip1). Biomacromolecules 2:538–540

    Article  PubMed  CAS  Google Scholar 

  • Galau GA, Hughes DW (1987) Coordinate accumulation of homeologous transcripts of seven cotton Lea gene families during embryogenesis and germination. Dev Biol 123:213–221

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098

    Article  PubMed  CAS  Google Scholar 

  • Hall D (2006) Protein self-association in the cell: a mechanism for fine tuning the level of macromolecular crowding? Eur Biophys J 35:276–280

    Article  PubMed  CAS  Google Scholar 

  • Han B, Hughes DW, Galau GA, Bewley JD, Kermode AR (1997) Changes in late-embryogenesis-abundant (LEA) messenger RNAs and dehydrins during maturation and premature drying of Ricinus communis L. seeds. Planta 201:27–35

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Charaterization and cryoprotective activity of cold responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  CAS  Google Scholar 

  • Hicks JM, Hsu VL (2004) The extended left-handed helix: a simple nucleic acid-binding motif. Proteins 55:330–338

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Danyluk J, Laliberte JF, Rassart E, Dhindsa RS, Sarhan F (1992) Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99:1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Cushman M, JC C (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress adaptive genes. Plant Sci 170:1173–1184

    Article  CAS  Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555–558

    Article  PubMed  CAS  Google Scholar 

  • Jensen AB, Goday A, Figueras M, Jessop AC, Pages M (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wang Y (2004) Beta-elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43:15567–15576

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Chellgren B, Rucker A, Troutman J, Fried M, Miller A, Creamer T (2001) Host-guest study of left-handed polyproline II helix formation. Biochemistry 40:14376–14383

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Chien CT, Lin CH, Chiu YY, Yang YS (2006) Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim. Proteomics 6:4147–4154

    Article  PubMed  CAS  Google Scholar 

  • Lisse T, Bartels D, Kalbitzer HR, Jaenicke R (1996) The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377:555–561

    PubMed  CAS  Google Scholar 

  • Livernois AM, Hnatchuk DJ, Findlater EE, Graether SP (2009) Obtaining highly purified intrinsically disordered protein by boiling lysis and single step ion exchange. Anal Biochem 392:70–76

    Article  PubMed  CAS  Google Scholar 

  • Luo P, Baldwin RL (1997) Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 36:8413–8421

    Article  PubMed  CAS  Google Scholar 

  • Magidovich E, Orr I, Fass D, Abdu U, Yifrach O (2007) Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci USA 104:13022–13027

    Article  PubMed  CAS  Google Scholar 

  • McNulty BC, Tripathy A, Young GB, Charlton LM, Orans J, Pielak GJ (2006) Temperature-induced reversible conformational change in the first 100 residues of alpha-synuclein. Protein Sci 15:602–608

    Article  PubMed  CAS  Google Scholar 

  • Mehta PA, Rebala KC, Venkataraman G, Parida A (2009) A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by Casein kinase II in vitro. Plant Physiol Biochem 47:701–709

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2005a) Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci 94:1668–1675

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2005b) Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys J 88:971–985

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2006) Macromolecular crowding. Curr Biol 16:R269–R271

    Article  PubMed  CAS  Google Scholar 

  • Momma M, Kaneko S, Haraguchi K, Matsukura U (2003) Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci Biotechnol Biochem 67:1832–1835

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148:1925–1937

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650

    Article  PubMed  CAS  Google Scholar 

  • Muthalif MM, Rowland LJ (1994) Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol 104:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Figueras M, Lopez C, Goday A, Pages M (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci USA 101:9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Sarnighausen E, Karlson D, Ashworth E (2002) Seasonal regulation of a 24-kDa protein from red-osier dogwood (Cornus sericea) xylem. Tree Physiol 22:423–430

    PubMed  CAS  Google Scholar 

  • Shi Z, Chen K, Liu Z, Kallenbach NR (2006) Conformation of the backbone in unfolded proteins. Chem Rev 106:1877–1897

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131:963–975

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    Article  PubMed  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  PubMed  CAS  Google Scholar 

  • Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117

    Article  PubMed  CAS  Google Scholar 

  • Wang X-S, Zhu H-B, Jin G-L, Liu H-L, Wu W-R, Zhu J (2007) Genome scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Welling A, Rinne P, Viherä-Aarnio A, Kontunen-Soppela S, Heino P, ET P (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  PubMed  CAS  Google Scholar 

  • Whittington SJ, Chellgren BW, Hermann VM, Creamer TP (2005) Urea promotes polyproline II helix formation: implications for protein denatured states. Biochemistry 44:6269–6275

    Article  PubMed  CAS  Google Scholar 

  • Wisniewsk M, Webb R, Balsamo R, Close T, Yu X, Griffith M (1999) Purification, immunolocalization, cryoprotective and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  Google Scholar 

  • Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zhang YX, Wei W, Han L, Guan ZQ, Wang Z, Chai TY (2008) BjDHNs confer heavy-metal tolerance in plants. Mol Biotechnol 38:91–98

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Rorat T, Szabala B, Ziolkowska A, Malepszy S (2006) Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci 170:1164–1172

    Article  CAS  Google Scholar 

  • Zimmerman SB, Minton AP (1993) Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct 22:27–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Harryson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eriksson, S.K., Harryson, P. (2011). Dehydrins: Molecular Biology, Structure and Function. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_14

Download citation

Publish with us

Policies and ethics