Skip to main content
Log in

Nucleotide sequence analysis of two lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality

  • Short Communication
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

There is large potential in the establishment of Acacia auriculiformis × Acacia mangium hybrid plantations through selection of high quality parents especially with characteristics favourable for some end products like pulp and fibre. Trees altered in their lignin profile with reduced amounts of lignin or increased extractable syringyl are desirable in the pulp and paper industry. Cinnamoyl-CoA reductase (CCR) and caffeic acid O-methyltransferase (COMT) are two enzymes likely to regulate lignin content and composition in the syringyl (S)- and guaiacyl (G)-related monolignols at specific branches of the lignin biosynthetic pathway. A goal of this study was to discover the genetic variation in CCR and COMT genes in Acacia species using single nucleotide polymorphisms (SNPs). In this study, two lignin genes, CCR (3,317 bp) and COMT (2,764 bp), were isolated from the Acacia hybrid, sequenced and analysed in silico. Southern blot analysis suggested that there are one to two copies of genes encoding CCR and COMT in the Acacia hybrid. Upon genotyping 480 individuals from natural populations of A. auriculiformis and A. mangium, six CCR SNPs were found in A. auriculiformis and five CCR SNPs in A. mangium. Three COMT SNPs were found in A. auriculiformis and one COMT SNP in A. mangium. A pair of CCR SNPs showed high linkage disequlibrium (LD) with r 2 value of 0.870 in an A. mangium population from Papua New Guinea. The SNPs will be further exploited through the candidate gene-based LD mapping to identify QTLs for the Acacia marker-assisted breeding. This is the first documentation of the isolation, cloning and re-sequencing of CCR and COMT genes in the Acacia hybrid and the natural populations of A. auriculiformis and A. mangium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    Article  CAS  Google Scholar 

  • Bart RS, Chern M, Vega-Sanchez E, Canlas P, Ronald PC (2010) Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet 6(9):e1001123

    Article  PubMed  Google Scholar 

  • Besse P, Da Silva D, Bory S, Noirot M, Grisoni M (2009) Variation in intron length in caffeic acid O-methyltransferase (COMT) in Vanilla species (Orchidaceae). Plant Sci 176(4):425–460

    Article  Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-approach to clone the sorghum brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214

    PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DA, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P (1991) One-hour downward alkaline capillary transfer for blotting DNA and RNA. Analyt Biochem 201:134–139

    Article  Google Scholar 

  • Costa MA, Collins RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64(6):1097–1112

    Article  PubMed  CAS  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178

    Article  Google Scholar 

  • Dwivedi UN, Campbell WH, Yu J, Datla RSS, Bugos RC, Chiang VL, Podila GK (1994) Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol 26:61–71

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genome 5(1):225–234

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46(3):356–370

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Clegg MT (1993) Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci U S A 90:5095–5099

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Inoue K, Blount J, Dixon R (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    PubMed  CAS  Google Scholar 

  • Hayakawa T, Nanto K, Kawai S, Katayama Y, Morohoshi N (1996) Molecular cloning and tissue-specific expression of two genes that encode caffeic acid O-methyltransferases from Populus kitakamiensis. Plant Sci 113:157–165

    Article  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Jackson LA, Shadle GL, Zhou R, Nakashima J, Chen F (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg Res 1:180–192

    Article  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34(18):6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferase. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, Goujon T, De Nadaï V, Martin MT, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Kuc J, Nelson OE, Flanagan P (1968) Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochemistry 7:1435–1436

    Article  CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  CAS  Google Scholar 

  • Lepoittevin C, Frigerio JM, Garnier-Géré P, Salin F, Cervera MT (2010) In vitro vs in silico detected SNPs for the development of a genotyping array: what can we learn from a non-model species? PLoS One 5(6):e11034. doi:10.1371/journal.pone.0011034

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Ma QH (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58:2011–2021

    Article  PubMed  CAS  Google Scholar 

  • Ma QH, Tian B (2005) Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biol Chem 386:553–560

    Article  PubMed  CAS  Google Scholar 

  • Malaysian Timber Industry Board (2007) Nine selected species for forest plantation programme in Malaysia. 3rd edn. Kuala Lumpur, pp. 9

  • Morrow MP, Mascia P, Self KP, Altschuler M (1997) Molecular characterization of a brown midrib deletion mutation in maize. Mol Breeding 3:351–357

    Article  CAS  Google Scholar 

  • Ni W, Paiva NL, Dixon RA (1994) Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Res 3:120–126

    Article  CAS  Google Scholar 

  • O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11:495–503

    Article  PubMed  Google Scholar 

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38:671–676

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-coA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Poke FS, Vaillancourt RE, Elliot RC, Reid JB (2003) Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2). Mol Breeding 12:107–118

    Article  CAS  Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignifications enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 95:12803–12808

    Article  PubMed  CAS  Google Scholar 

  • Roje S (2006) S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686–1698

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Sim BL (1987) Research on Acacia mangium in Sabah: a review. International Workshop, Forestry Training Centre, Queensland, Australia, 4–7 August 1986. ACIAR Proceedings 16:164–166

  • Sukganah A, Lee HH, Choong CY, Wickneswari R (2010) Characterization of lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality. Proceedings of the National Biotechnology Seminar, Kuala Lumpur

  • Tham CK (1979) Trials of Acacia mangium Willd. as a plantation species in Sabah. Forest Genetic Resources Information 9. FAO Forestry Occasional Paper No.1

  • Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Popko JL, Mielke MR, Hu WJ, Podila GK, Chiang VL (1998) Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol 117:101–112

    Article  PubMed  CAS  Google Scholar 

  • Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Leple JC, Pilate G, Cornu D, Monties B (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864

    Article  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    PubMed  CAS  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    PubMed  CAS  Google Scholar 

  • Wong ML, Cannon CH, Wickneswari R (2011) Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics 12:342

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45(9):1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Yong SYC, Choong CY, Cheong PL, Pang SL, Nor Amalina R, Harikrishna JA, Mohd MNI, Hedley P, Milne L, Vaillancourt R, Wickneswari R (2010) Analysis of ESTs generated from inner bark tissue of an Acacia auriculiformis × A. mangium hybrid. Tree Genet Genome 7:143–152

    Article  Google Scholar 

  • Zein I, Wenzel G, Andersen JR, Lübberstedt T (2007) Low level of linkage disequilibrium at the COMT (caffeic acid O-methyltransferase) locus in European maize (Zea mays L.). Genet Resour Crop Evol 54:139–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by e-Science Fund (02-01-02-SF0403) from the Ministry of Science, Technology and Innovation, Malaysia and OUP (UKM-OUP-KPB-33-166/2008 dan UKM-OUP-KPB-32-159/2009) from Universiti Kebangsaan Malaysia.

Data archiving statement

The CCR and COMT gene sequences have been deposited in the GenBank. AhgCCR1 GenBank accession number is HQ317734 and AhgCOMT1 GenBank accession number is HQ317735. The polymorphic SNPs identified in the assay have been deposited into dbSNP (Table 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wickneswari.

Additional information

Communicated by D. Neale

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 158 kb)

ESM 2

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukganah, A., Choong, C.Y., Russell, J. et al. Nucleotide sequence analysis of two lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality. Tree Genetics & Genomes 9, 1369–1381 (2013). https://doi.org/10.1007/s11295-013-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0640-x

Keywords

Navigation