Skip to main content

Advertisement

Log in

Improving Saccharification Efficiency of Alfalfa Stems Through Modification of the Terminal Stages of Monolignol Biosynthesis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

A series of transgenic lines of alfalfa (Medicago sativa) were generated in which either one of the two potentially terminal enzymes of the monolignol pathway, cinnamoyl CoA reductase (CCR) or cinnamyl alcohol dehydrogenase (CAD) was down-regulated by expression of antisense transgenes. Levels of CCR enzymatic activity were reduced to between 10% to 65% of the control level, and levels of CAD activity were similarly reduced to between 5% to 40% of the control. Biomass yields were reduced in the most strongly down-regulated lines for both transgenes, but many of the lines exhibited reduced lignin levels but normal biomass and flowering time. In vitro dry matter digestibility was increased for most transgenic lines compared to controls. Saccharification efficiency was determined by measuring the release of sugars from cell walls directly, or after sulfuric acid pre-treatment and subsequent digestion with a mixture of cellulase and cellobiase. Several CCR down-regulated lines had significantly enhanced saccharification efficiency with both pre-treated and untreated tissues, whereas CAD down-regulation had less impact on sugar release when compared to that from CCR lines with similar lignin contents. One CCR line with a 50–60% improvement in saccharification efficiency exhibited normal biomass production, indicating the potential for producing high yielding, improved feedstocks for bioethanol production through genetic modification of the monolignol pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAD:

cinnamyl alcohol dehydrogenase

CCR:

cinnamoyl coenzyme A reductase

G:

guaiacyl

HCT:

hydroxycinnamoyl transferase

S:

syringyl

References

  1. Baucher M, BernardVailhe MA, Chabbert B et al (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447

    Article  PubMed  CAS  Google Scholar 

  2. Baucher M, Chabbert B, Pilate G et al (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    PubMed  CAS  Google Scholar 

  3. Bernard-Vailhé MA, Besle JM, Maillot MP et al (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76:505–514

    Article  Google Scholar 

  4. Bessau S, Hoffmann L, Geoffroy P et al (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  CAS  Google Scholar 

  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  6. Boudet AM, Kajita S, Grima-Pettenati J et al (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  PubMed  CAS  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  8. Chabannes M, Barakate A, Lapierre C et al (2001a) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  9. Chabannes M, Ruel K, Yoshinaga A et al (2001b) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282

    Article  PubMed  CAS  Google Scholar 

  10. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 25:759–761

    Article  CAS  Google Scholar 

  11. Chen F, Reddy MSS, Temple S et al (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for the formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  PubMed  CAS  Google Scholar 

  12. Chen L, Auh C-K, Dowling P et al (2003) Improved forgage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  PubMed  CAS  Google Scholar 

  13. Davison BH, Drescher SR, Tuskan GA et al (2006) Variation of S/G ratio and lignin content in a Populus family influences the release of fermentable sugars by dilute acid hydrolysis. Appl Biochem Biotechnol 129–132:427–435

    Article  PubMed  Google Scholar 

  14. Dien BS, Jung H-JG, Vogel KP et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891

    Article  CAS  Google Scholar 

  15. Do C-T, Pollet B, Thevenin J et al (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid 3-O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  PubMed  CAS  Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  17. Ebert J (2007) Alfalfa’s bioenergy appeal. Ethanol Producer Magazine (BBI International), Sept 2007, pp 88–94

  18. Eudes A, Pollet B, Sibout R et al (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    Article  PubMed  CAS  Google Scholar 

  19. Goujon T, Ferret V, Mila I et al (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effect on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  20. Guo D, Chen F, Inoue K et al (2001a) Down-regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa (Medicago sativa L.): impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  PubMed  CAS  Google Scholar 

  21. Guo D, Chen F, Wheeler J et al (2001b) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  PubMed  CAS  Google Scholar 

  22. Halpin C, Knight ME, Foxon GA et al (1994) Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  23. Hein JJ (1990) Unified approach to alignment and phylogenies. Meth Enzymol 183:626–645

    Article  PubMed  CAS  Google Scholar 

  24. Hibino T, Yakabe K, Kawazu T et al (1995) Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci Biotech Biochem 59:929–931

    CAS  Google Scholar 

  25. Hoffmann L, Maury S, Martz F et al (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  26. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  27. Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  28. Lamb JFS, Sheaffer CC, Samac DA (2003) Population density and harvest maturity effects on leaf and stem yield in alfalfa. Agron J 95:635–641

    Google Scholar 

  29. Lapierre C, Monties B, Rolando C (1985) Thioacidolysis of lignin: comparison with acidolysis. J Wood Chem Technol 5:277–292

    Article  CAS  Google Scholar 

  30. Lapierre C, Pilate G, Pollet B et al (2004) Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. Phytochemistry 65:313–321

    Article  PubMed  CAS  Google Scholar 

  31. Lapierre C, Pollet B, MacKay JJ et al (2000) Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase. J Agric Food Chem 48:2326–2331

    Article  PubMed  CAS  Google Scholar 

  32. Lapierre C, Pollet B, PetitConil M et al (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163

    Article  PubMed  CAS  Google Scholar 

  33. Lapierre C, Pollet B, Rolando C (1995) New insight into the molecular architecture of hardwood lignins by chemical degradative method. Res Chem Intermed 21:397–412

    Article  CAS  Google Scholar 

  34. Leple JC, Dauwe R, Morreel K et al (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  CAS  Google Scholar 

  35. Luo C, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138

    Article  CAS  Google Scholar 

  36. Nakashima J, Chen F, Jackson L et al (2008) Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa L.): effects on lignin composition in specific cell types. New Phytol 179:738–750

    Article  PubMed  CAS  Google Scholar 

  37. O’Connell A, Holt K, Piquemal J et al (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11:495–503

    Article  PubMed  CAS  Google Scholar 

  38. Oldroyd GE, Geurts R (2001) Medicago truncatula, going where no plant has gone before. Trends Plant Sci 6:552–554

    Article  PubMed  CAS  Google Scholar 

  39. Parvathi K, Chen F, Guo D et al (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  PubMed  CAS  Google Scholar 

  40. Pilate G, Guiney E, Holt K et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  41. Piquemal J, Lapierre C, Myton K (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  42. Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  PubMed  CAS  Google Scholar 

  43. Ralph J, Hatfield RD, Piquemal J et al (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci USA 95:12803–12808

    Article  PubMed  CAS  Google Scholar 

  44. Reddy MSS, Chen F, Shadle GL et al (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578

    Article  PubMed  CAS  Google Scholar 

  45. Reddy MSS, Ghabrial SA, Redmond CT et al (2002) Resistance to bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology 91:831–838

    Article  Google Scholar 

  46. Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer-Verlag, Berlin Heidelberg, pp 334–340

    Google Scholar 

  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  48. Shadle G, Chen F, Reddy MSS et al (2006) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxy cinnamoyl transferase in transgenic alfalfa impacts lignification, development and forage quality. Phytochemistry 68:1521–1529

    Article  CAS  Google Scholar 

  49. Sibout R, Eudes A, Mouille G et al (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  50. van der Rest B, Danoun S, Boudet AM et al (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411

    Article  PubMed  CAS  Google Scholar 

  51. Vogel KP, Jung HJG (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49

    Article  Google Scholar 

  52. Vogel KP, Pederson JF, Masterson SD, Toy JJ (1999) Evaluation of a filterbag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39:276–279

    Google Scholar 

  53. Wyrambik D, Grisebach H (1979) Enzymic synthesis of lignin precursors. Further studies on cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem 97:503–509

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Ajith Anand and Stephen Temple for critical reading of the manuscript, and Dennis Walker for assistance with fiber quality analysis. This work was supported by the US Department of Energy (award number DE-FG02-06ER64303), Forage Genetics International and the Samuel Roberts Noble Foundation. This report was prepared as an account of work partly sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Additional information

Lisa A. Jackson, Gail L. Shadle: These authors contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM 1

Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. (DOC 410 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, L.A., Shadle, G.L., Zhou, R. et al. Improving Saccharification Efficiency of Alfalfa Stems Through Modification of the Terminal Stages of Monolignol Biosynthesis. Bioenerg. Res. 1, 180–192 (2008). https://doi.org/10.1007/s12155-008-9020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-008-9020-z

Keywords

Navigation