Skip to main content
Log in

Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Retrotransposons play an important role in plant genetic instability and genome evolution. Retrotransposon-based molecular markers are valuable tools to reveal the behavior of retrotransposons in their host genome. In this study, suppression polymerase chain reaction was used, for the first time, to develop retrotransposon long terminal repeat (LTR) and polypurine tract (PPT) primers in Japanese persimmon (Diospyros kaki Thunb.), which were then employed for germplasm identification by means of interretrotransposon-amplified polymorphism (IRAP), sequence-specific amplified polymorphism (SSAP) and retrotransposon-microsatellite-amplified polymorphism (REMAP) molecular markers. The results showed that 16 out of 26 primers produced expected amplifications and abundant polymorphisms by IRAP in 28 genotypes of Diospyros. Moreover, some of these primers were further successfully used in REMAP and SSAP analysis. Each type of molecular markers produced unique fingerprint in 28 genotypes analyzed. Among the primers/primer combinations, two IRAP primers and four SSAP primer combinations could discriminate all of the germplasm solely. Further comparative analysis indicated that IRAP was the most sensitive marker system for detecting variability. High level of retrotransposon insertion polymorphisms between bud sports were detected by IRAP and SSAP, and the primers/primer combinations with powerful discrimination capacity for two pairs of bud sports lines were further obtained. Additionally, possible genetic relationships between several Japanese persimmon were discussed. To our knowledge, this is the first report on the development of retrotransposon LTR and PPT primers in Diospyros, and the retrotransposon primers developed herein might open new avenue for research in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Badenes M, Garcés A, Romero C, Romero M, Clavé J, Rovira M, Llácer G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Res Crop Evol 50:579–585

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Berenyi M, Gichuki ST, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. Theor Appl Genet 105:862–869

    Article  PubMed  CAS  Google Scholar 

  • Bernet GP, Asíns MJ (2003) Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet 108:121–130

    Article  PubMed  CAS  Google Scholar 

  • Bousios A, Saldana-Oyarzabal I, Valenzuela-Zapata AG, Wood C, Pearce SR (2007) Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Sci 17:291–298

    Article  CAS  Google Scholar 

  • Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylog Evol 21:285–293

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Galindo LM, Gaitán-Solís E, Baccam P, Tohme J (2004) Isolation and characterization of RNase LTR sequences of Ty1-copia retrotransposons in common bean (Phaseolus Vulgaris L.). Genome 47:84–95

    Article  PubMed  CAS  Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    Article  PubMed  CAS  Google Scholar 

  • Guo DL, Zhang HQ, Luo ZR (2006) Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Sci 170:528–533

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki S, Yonemori K, Sato A, Yamada M, Sugiura A (2000) Evaluation of RFLP analysis for discriminating PCNA genotype in some persimmon cultivars. J Jpn Soc Hort Sci 69:702–704

    CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Sci 6:127–133

    Article  CAS  Google Scholar 

  • Lavrentieva I, Broude NE, Lebedev Y, Gottesman II, Lukyanov SA, Smith CL, Sverdlov ED (1999) High polymorphism level of genomic sequences flanking insertion sites of human endogenous retroviral long terminal repeats. FEBS Letters 443:341–347

    Article  PubMed  CAS  Google Scholar 

  • Luo ZR, Yonemori K, Sugiura A (1995) Evaluation of RAPD analysis for cultivar identification of persimmons. J Jpn Soc Hort Sci 64:535–541, (in Japanese with English summary)

    Article  CAS  Google Scholar 

  • Luo ZR, Cai LH, Li FF (1999) Molecular systematics of China native nonastringent persimmon based on random amplified polymorphic DNA. Acta Hort Sin 26:297–301, (in Chinese with English summary)

    Google Scholar 

  • Maki S, Oyama K, Kurahashi T, Nakahira T, Kawabata T, Yamada T (2001) RFLP analysis for cultivar identification of persimmons. Sci Hortic 91:407–412

    Article  CAS  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka A, Iwami N, Matsumoto S, Itamura H, Yamagishi M (2002) Ty1-copia group retrotransposons in persimmon (Diospyros kaki Thunb.). Genes Genet Syst 77:131–136

    Article  PubMed  CAS  Google Scholar 

  • Natali L, Giordani T, Buti M, Cavallini A (2007) Isolation of Ty1-copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breed 19:255–265

    Article  CAS  Google Scholar 

  • Parfitt DE, Yonemori K, Ryugo K, Sugiura A (1991) Isozyme identification of Japanese persimmon (Diospyros kaki L.): comparisons of cultivars in California and Japan. Fruit Var J 45:107–113

    Google Scholar 

  • Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15

    Article  PubMed  CAS  Google Scholar 

  • Price Z, Schulman AH, Mayes S (2003) Development of new marker methods-an example from oil palm. Plant Genet Res 1:103–113

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC, Numerical taxonomy and multivariate analysis system. Version 2.10e. Exeter Software, Setauket, New York, USA

    Google Scholar 

  • Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldaña CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278:433–441

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Mangalam AK, Dwivedi S, Naik S (1998) Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques 24:318–319

    PubMed  CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2005) Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism. Theor Appl Genet 110:1290–1300

    Article  PubMed  CAS  Google Scholar 

  • Sugiura A (2005) Retrospects and prospects on persimmon research. Acta Hort 685:177–186

    Google Scholar 

  • Tao R, Sugiura A (1986) Cultivar identification of Japanese persimmon by leaf isozymes. HortSci 22:932–935

    Google Scholar 

  • Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440–444

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi M, Matsumoto S, Nakatsuka A, Itamura H (2005) Identification of persimmon (Diospyros kaki) cultivars and phenetic relationships between Diospyros species by more effective RAPD analysis. Sci Hortic 105:283–290

    Article  CAS  Google Scholar 

  • Yang BC, Xiao BG, Chen XJ, Shi CH (2007) Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Ann Appl Biol 150:393–401

    Article  CAS  Google Scholar 

  • Yonemori K, Sugiura A, Yamada M (2000) Persimmon genetics and breeding. Plant Breed Rev 19:191–225

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs. Jihong Liu and Qiang Xu, Huazhong Agricultural University, for critical reading of the manuscript. This research was supported by Natural Science Foundation of China (NSFC No. 30471203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Luo.

Additional information

Communicated by J. Dean

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, X., Zhang, Q. & Luo, Z. Development of retrotransposon primers and their utilization for germplasm identification in Diospyros spp. (Ebenaceae). Tree Genetics & Genomes 5, 235–245 (2009). https://doi.org/10.1007/s11295-008-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0182-9

Keywords

Navigation