Skip to main content
Log in

Production of fungal phytases in solid state fermentation and potential biotechnological applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data are included in the manuscript.

References

  • Abd-ElAziem F, Abdulelah NTA et al (2015) Inducible secretion of phytate-degrading enzymes from bacteria associated with the medical plant Rosa damascena cv. Taifi using rice bran. Afr J Biotechnol 14:425–433

    Article  Google Scholar 

  • Ahmed NE, Salem SS, Hashem AH (2021) Statistical optimization, partial purification, and characterization of phytase produced from Talaromyces purpureogenus NSA20 using potato peel waste and its. Biointerface Res 12:4417–4431

    Article  Google Scholar 

  • Awad GEA, Helal MMI, Danial EN et al (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using box–behnken design. Saudi J Biol Sci 21:81–88 (4)

    Article  PubMed  CAS  Google Scholar 

  • Bala A, Sapna, Jain J et al (2014) Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. Biocatal Agricult Biotechnol 3:259–264

    Article  Google Scholar 

  • Berikten D, Kivanc M (2014) Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Prep Biochem 44:834–848

    Article  CAS  Google Scholar 

  • Bhandari Y, Sonwane B, Vamkudoth KR (2023) Isolation and biochemical characterization of acid phytase from Aspergillus niger and its applications in dephytinization of phytic acid in poultry feed ingredients. Microbiol 92:221–229

    Article  CAS  Google Scholar 

  • Bhavsar K, Ravi Kumar V, Khire JM (2011) High level phytase production by Aspergillus niger NCIM 563 in solid state culture: response surface optimization, up-scaling, and its partial characterization. J Ind Microbiol Biotechnol 38:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Bhavsar K, Gujar P, Shah P et al (2013) Combinatorial approach of statistical optimization and mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition. Appl Microbiol Biotechnol 97:673–679

    Article  PubMed  CAS  Google Scholar 

  • Borgi MA, Boudebbouze S, Aghajari N, Szukala F, Pons N, Maguin E, Rhimi M (2014) The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl Microbiol Biotechnol 98:5937–5947

    Article  PubMed  CAS  Google Scholar 

  • Buddhiwant P, Bhavsar K, Ravi Kumar V et al (2016) Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: a bioprocess optimization study for animal feedstock applications. Prep Biochem Biotechnol 46:531–538

    Article  PubMed  CAS  Google Scholar 

  • Çalışkan-Özdemir S, Önal S, Uzel A (2021) Partial purification and characterization of a thermostable phytase produced by thermotolerant aspergillus tubingensis TEM 37 isolated from hot spring soil in gediz geothermal field, Turkey. Geomicrobiol J 38:895–904

    Article  Google Scholar 

  • Chen R, Zhang C, Yao B et al (2013) Corn seeds as bioreactors for the production of phytase in the feed industry. J Biotechnol 165:120–126

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Cheng KJ, Ko TP, Guo RT (2015) Current progresses in phytase research: three-dimensional structure and protein engineering. ChemBioEng Rev 2:76–86

    Article  Google Scholar 

  • Coban HB, Demirci A (2014) Screening of phytase producers and optimization of culture conditions for submerged fermentation. Bioprocess Biosyst Eng 37:609–616

    Article  PubMed  CAS  Google Scholar 

  • Correia I, Aksu S, Adão P et al (2008) Vanadate substituted phytase: immobilization, structural characterization and performance for sulfoxidations. J Inorg Biochem 102:318–329

    Article  PubMed  CAS  Google Scholar 

  • Corrêa TLR, de Araújo EF (2020) Fungal phytases: from genes to applications. Brazilian J Microbiol 51:1009–1020

    Article  Google Scholar 

  • Coutinho TC, Tardioli PW, Farinas CS (2020) Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Appl Biochem Biotechnol 190:270–292

    Article  PubMed  CAS  Google Scholar 

  • Cowieson AJ, Wilcock P, Bedford MR (2011) Super-dosing effects of phytase in poultry and other monogastrics. World Poul Sci J 67(2):225–236

    Article  Google Scholar 

  • Cowieson AJ, Ruckebusch JP, Knap I, Guggenbuhl P, Fru-Nji F (2015) Phytate-free nutrition: a new paradigm in monogastric animal production. Anim Feed Sci Technol 222:180–189

    Article  Google Scholar 

  • Dahiya S, Singh B (2019) Enhanced endoxylanase production by Myceliophthora thermophila with applicability in saccharification of agricultural substrates. 3 Biotech 9:1–10

    Article  CAS  Google Scholar 

  • de Oliveira Ornela PH, Souza Guimarães LH (2019) Purification and characterization of an alkalistable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem 81:70–76

    Article  Google Scholar 

  • Dhariwal AG, Tarafdar JC, Dhariwal AG et al (2023) A comparison of phytase efficiency originated from plant and fungal sources. GSC Biol Pharm Sci 23:117–126

    Article  CAS  Google Scholar 

  • Din M, Nelofer R, Salman M et al (2019) Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol Rep 22:e00323

    Article  Google Scholar 

  • Dixit M, Shukla P (2023) Multi-efficient endoglucanase from Aspergillus niger MPS25 and its potential applications in saccharification of wheat straw and waste paper deinking. Chemosphere 313:137298

    Article  PubMed  CAS  Google Scholar 

  • Duliński R, Zdaniewicz M, Pater A, Poniewska D, Żyła K (2020) The impact of phytases on the release of bioactive inositols, the profile of inositol phosphates, and the release of selected minerals in the technology of buckwheat beer production. Biomolecules 10(2):166

    Article  PubMed  PubMed Central  Google Scholar 

  • Elkhateeb YAM, Fadel M (2022) Bioinformatic studies, experimental validation of phytase production and optimization of fermentation conditions for enhancing phytase enzyme production by different microorganisms under solid-state fermentation. Open Microbiol J. https://doi.org/10.2174/18742858-v16-e2202160

    Article  Google Scholar 

  • Evstatieva Y, Ilieva A, Valcheva V et al (2020) Production of plant growth regulatory metabolites of Rhizopus arrhizus KB-2. Bulg J Agric Sci 26:551–557

    Google Scholar 

  • Fan CM, Wang YH, Zheng CY et al (2016) Fingerprint motifs of phytases. Afr J Biotechnol 12:1138–1147

    Google Scholar 

  • Feder D, McGeary RP, Mitić N, Lonhienne T, Furtado A, Schulz BL, Henry RJ, Schmidt S, Guddat LW, Schenk G (2020) Structural elements that modulate the substrate specificity of plant purple acid phosphatases: avenues for improved phosphorus acquisition in crops. Plant Sci 294:110445

    Article  PubMed  CAS  Google Scholar 

  • Filippovich SY, Isakova EP, Gessler NN et al (2023) Advances in immobilization of phytases and their application. Bioresour Technol 379:129030

    Article  PubMed  CAS  Google Scholar 

  • Gaind S, Singh S (2015) Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. Int Biodeter Biodegrad 99:15–22

    Article  CAS  Google Scholar 

  • Gessler NN, Serdyuk EG, Isakova EP, Deryabina YI (2018) Phytases and the prospects for their application (review). Appl Biochem Microbiol 54:352–360

    Article  CAS  Google Scholar 

  • Ghorbani Nasrabadi R, Greiner R, Yamchi A et al (2018) A novel purple acid phytase from an earthworm cast bacterium. J Sci Food Agric 98:3667–3674

    Article  PubMed  CAS  Google Scholar 

  • Gontia-Mishra I, Tiwari S (2013) Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol Biotechnol 51:313–326

    CAS  Google Scholar 

  • Gonzalez-Uarquin F, Kenéz Á, Rodehutscord M, Huber K (2020) Dietary phytase and myo-inositol supplementation are associated with distinct plasma metabolome profile in broiler chickens. Animal 14(3):549–559

    Article  PubMed  CAS  Google Scholar 

  • Goyal S, Nagar S, Mallesh G et al (2022) A review on role of phytic acid and phytase in food and feed. Chem Sci Rev Lett 2022:510–518

    Google Scholar 

  • Gruninger RJ, Thibault J, Capeness MJ et al (2014) Structural and biochemical analysis of a unique phosphatase from Bdellovibrio bacteriovorus reveals its structural and functional relationship with the protein tyrosine phosphatase class of phytase. PLoS ONE 9:e94403

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulati H, Chadha B, Saini H (2007) Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7 Acta. Microbiol Immunol Hung 54(2):121–138

    Article  CAS  Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK (2014) Isolation of thermotolerant phytase producing fungi and optimisation of phytase production by Aspergillus niger NRF9 in solid state fermentation using response surface methodology. Biotechnol Bioprocess Eng 19:996–1004

    Article  CAS  Google Scholar 

  • Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684

    Article  PubMed  CAS  Google Scholar 

  • Handa V, Sharma D, Kaur A et al (2020) Biotechnological applications of microbial phytase and phytic acid in food and feed industries. Biocatal Agricult Biotechnol 25:101600

    Article  Google Scholar 

  • He Q, Reis CER, Wang F, Hu B (2017) Phytate extraction from coproducts of the dry-grind corn ethanol process. RSC Adv 7(9):5466–5472

    Article  CAS  Google Scholar 

  • Hellström A, Qvirist L, Svanberg U et al (2015) Secretion of non-cell‐bound phytase by the yeast Pichia kudriavzevii TY13. J Appl Microbiol 118:1126–1136

    Article  PubMed  Google Scholar 

  • Hermanson KD, Huemmerich D, Scheibel T, Bausch AR (2007) Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 19(14):1810–1815

    Article  CAS  Google Scholar 

  • Ige DV, Abioye OS, Akinremi OO et al (2011) Phosphorus solubility in Manitoba soils treated with pig manure from phytase supplemented diets. Can J Soil Sci 91:947–955

    Article  Google Scholar 

  • Irvine RF, Brown KD, Berridge MJ (1984) Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J 222(1):269–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jafari-Tapeh H, Hamidi-Esfahani Z, Azizi MH (2012) Culture condition improvement for phytase production in solid state fermentation by Aspergillus ficuum using statistical method. Int Sch Res Netw ISRN Chem Eng 2012:5

    Google Scholar 

  • Jain J, Singh B (2017) Phytase production and development of an ideal dephytinization process for amelioration of food nutrition using microbial phytases. Appl Biochem Biotechnol 181:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Jain J, Sapna, Singh B (2016) Characteristics and biotechnological applications of bacterial phytases. Process Biochem 51:159–169

    Article  CAS  Google Scholar 

  • Jatuwong K, Kumla J, Suwannarach N et al (2020) Bioprocessing of agricultural residues as substrates and optimal conditions for phytase production of chestnut mushroom, pholiota adiposa. Solid State Ferment 6:384

    CAS  Google Scholar 

  • Joshi S, Satyanarayana T (2015) Characteristics and applicability of phytase of the yeast Pichia anomala in synthesizing haloperoxidase. Appl Biochem Biotechnol 176:1351–1369

    Article  PubMed  CAS  Google Scholar 

  • Kalkan SO, Bozcal E, Hames Tuna EE et al (2020) Characterisation of a thermostable and proteolysis resistant phytase from Penicillium polonicum MF82 associated with the marine sponge Phorbas sp. Biocatal Biotransform 38:469–479

    Article  CAS  Google Scholar 

  • Kalsi HK, Singh R, Dhaliwal HS et al (2016) Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. 3 Biotech 6:1–13

    Article  Google Scholar 

  • Kanti A, Idris I, Sudiana IM (2020) Aspergillus niger Str 3 and Neurospora sitophila for phytase production on coconut oil cake supplemented with rice brand in solid-state fermentation. IOP Conf Ser Earth Environ Sci 439:12020

    Article  Google Scholar 

  • Kassim MA, Meng TK, Kamaludin R et al (2022) Bioprocessing of sustainable renewable biomass for bioethanol production. In: Yusup S, Rashidi NA (eds) Value-chain biofuels fundam technol stand. Elsevier, Amsterdam, pp 195–234

    Chapter  Google Scholar 

  • Kaur R, Saxena A, Sangwan P et al (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusant Biosci 9:68–76

    Article  Google Scholar 

  • Kaur P, Vohra A, Satyanarayana T (2021) Developments in fungal phytase research: characteristics and multifarious applications. Springer, Singapore

    Google Scholar 

  • Kebreab E, Hansen AV, Strathe AB (2012) Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Curr Opin Biotechnol 23:872–877

    Article  PubMed  CAS  Google Scholar 

  • Kiani AK, Paolacci S, Calogero AE, Cannarella R, Di Renzo GC, Gerli S, Della Morte C, Busetto GM, De Berardinis E, Del Giudice F, Stuppia L (2021) From Myo-inositol to D-chiro-inositol molecular pathways. Eur Rev Med Pharmacol Sci 25(5):2390–2402

    PubMed  CAS  Google Scholar 

  • Kour D, Lata Rana K, Yadav N et al (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer, Cahm, pp 1–64

    Google Scholar 

  • Kumar V, Sinha AK (2018) General aspects of phytases. In: Nunes CS, Kumar V (eds) Enzymes in human and animal nutrition. Elsevier, Amsterdam, pp 53–72

    Chapter  Google Scholar 

  • Kumar A, Chanderman A, Makolomakwa M et al (2016) Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Crit Rev Environ Sci Technol 46:556–591

    Article  CAS  Google Scholar 

  • Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK (2021) Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 142:110193

    Article  PubMed  CAS  Google Scholar 

  • Kumari N, Bansal S (2021) Statistical modeling and optimization of microbial phytase production towards utilization as a feed supplement. Biomass Convers Biorefinery 1:1–11

    Google Scholar 

  • Kumari A, Satyanarayana T, Singh B (2016) Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile and its application in beneficiation of poultry feed. Appl Biochem Biotechnol 178:197–210

    Article  PubMed  CAS  Google Scholar 

  • Khullar E, Shetty JK, Rausch KD, Tumbleson ME, Singh V (2011) Use of phytases in ethanol production from E-Mill corn processing. Cereal Chem 88(3):223–227

    Article  CAS  Google Scholar 

  • Lahiji S, Hemmati R, Homaei A et al (2021) Improved thermal stability of phytase from Yersinia intermedia by physical adsorption immobilization on amino-multiwalled carbon nanotubes. Bioprocess Biosyst Eng 44:2217–2228

    Article  PubMed  CAS  Google Scholar 

  • Langeroudi JA, Sabet MS, Jalali-Javaran M, Zamani K, Lohrasebi T, Malboobi MA (2023) Functional assessment of AtPAP17; encoding a purple acid phosphatase involved in phosphate metabolism in Arabidopsis thaliana. Biotechnol Lett 45(5):719–739

    Article  Google Scholar 

  • Lee SH, Cho J, Bok J et al (2014) Characterization, gene cloning, and sequencing of a fungal phytase, PhyA, from Penicillium oxalicum PJ3. Prep Biochem Biotechnol 45:336–347

    Article  Google Scholar 

  • Lee SA, Dunne J, Febery E, Brearley CA, Mottram T, Bedford MR (2018) Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens. Br Poul Sci 59(5):568–578

    Article  CAS  Google Scholar 

  • Liu X, Han R, Cao Y, Turner BL, Ma LQ (2022) Enhancing phytate availability in soils and phytate-P acquisition by plants: a review. Environ Sci Technol 56(13):9196–9219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longin CFH, Afzal M, Pfannstiel J et al (2023) Mineral and phytic acid content as well as phytase activity in flours and breads made from different wheat species. Int J Mol Sci 24:2770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes MM, Coutinho TC, Malafatti JOD et al (2021) Immobilization of phytase on zeolite modified with iron(II) for use in the animal feed and food industry sectors. Process Biochem 100:260–271

    Article  CAS  Google Scholar 

  • Ma XF, Tudor S, Butler T, Ge Y, Xi Y, Bouton J, Harrison M, Wang ZY (2012) Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils. Mol Breed 30:377–391

    Article  PubMed  CAS  Google Scholar 

  • Mahendran S, Sankaralingam S, Maheswari P et al (2022) Production, characterization, and feed supplement applications of phytase enzyme from Aspergillus tubingensis isolated from western Ghats soil. Biomass Convers Biorefinery 1:1–11

    Google Scholar 

  • Mahmood S, Shahid MG, Nadeem M et al (2023) Stimulatory effect of medium components on phytase production by Aspergillus niger and biotechnological application as a poultry feed additive. Kuwait J Sci. https://doi.org/10.48129/kjs.17947

    Article  Google Scholar 

  • Makolomakwa M, Puri AK, Permaul K, Singh S (2017) Thermo-acid-stable phytase-mediated enhancement of bioethanol production using Colocasia esculenta. Bioresour Technol 235:396–404

    Article  PubMed  CAS  Google Scholar 

  • Malý O, Zugárková I, Radojičić M et al (2023) Increasing phosphorus digestibility in common carp (Cyprinus carpio L.) farming using phytase and citric acid. Aquac Res 2023:1–10

    Article  Google Scholar 

  • Miao J, Wang M, Ma L, Li T, Huang Q, Liu D, Shen Q (2019) Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: Insights into performance, transcriptional, and proteomic profiles. Biotechnol Biofuel 12:1–19

    Article  Google Scholar 

  • Mikheev VS, Struchkova IV, Ageyeva MN et al (2022) The role of Phialocephala fortinii in improving plants’ phosphorus nutrition: new puzzle pieces. J Fungi 8:1225

    Article  CAS  Google Scholar 

  • Mikulski D, Kłosowski G, Rolbiecka A (2015) Influence of phytase and supportive enzymes applied during high gravity mash preparation on the improvement of technological indicators of the alcoholic fermentation process. Biomass Bioenergy 80:191–202

    Article  CAS  Google Scholar 

  • Mir S, Dervash MA, Shikari AB et al (2022) Microbial consortium: a biotechnological tool for enhanced bioremediation in pollution-affected environments. Environ Biotechnol. https://doi.org/10.1201/9781003277279-5

    Article  Google Scholar 

  • Moreira KA, Herculano PN, De M et al (2014) Optimization of phytase production by Aspergillus japonicus Saito URM 5633 using cassava bast as substrate in solid state fermentation. Afr J Microbiol Res 8:929–938

    Article  Google Scholar 

  • Moriarty DJW (1973) The physiology of digestion of blue-green algae in the cichlid fish, Tilapia nilotica. J Zool 171:25–39

    Article  CAS  Google Scholar 

  • Mrudula Vasudevan U, Jaiswal AK, Krishna S, Pandey A (2019) Thermostable phytase in feed and fuel industries. Bioresour Technol 278:407

    Article  Google Scholar 

  • Mullaney EJ, Ullah AHJ (2006) Phytases: attributes, catalytic mechanisms and applications. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CABI, Wallingford

    Google Scholar 

  • Nadeem H, Shah SZH, Fatima M et al (2023) Prospects of microbial phytases in the food and feed industry. In: Kumar A, Bilal M et al (eds) Microbial biomolecules: emerging approach in agriculture, pharmaceuticals and environment management. Elsevier, Amsterdam, pp 325–351

    Chapter  Google Scholar 

  • Nascimento JCS, Ribeiro AG, Pessoa RAS, Rabello CBV, Venâncio A, Porto TS, Teixeira JAC, Porto ALF (2022) Effect of pH and temperature on phytase and biomass production by submerged fermentation with Aspergillus niger var phoenicis URM 4924. Res Soc Dev 11(6):e41311628994

    Article  Google Scholar 

  • Neira-Vielma AA, Aguilar CN, Ilyina A et al (2018) Purification and biochemical characterization of an Aspergillus niger phytase produced by solid-state fermentation using triticale residues as substrate. Biotechnol Rep 17:49–54

    Article  Google Scholar 

  • Onibokun EA, Eni AO, Oranusi SU (2022) Purification and characterization of phytase from a local poultry isolate of Aspergillus flavus MT899184. In: Ayeni AO, Sanni SE, Oranusi SU (eds) Bioenergy and biochemical processing technologies. Springer, Cham, pp 99–112

    Chapter  Google Scholar 

  • Pable AA, Shah S, Ravi Kumar V et al (2019) Use of Plackett-Burman design for enhanced phytase production by Williopsis saturnus NCIM 3298 for applications in animal feed and ethanol production. 3 Biotech. https://doi.org/10.1007/s13205-019-1764-y. (3 Biotech 9)

    Article  PubMed  PubMed Central  Google Scholar 

  • Piecha CR, Alves TC, de Zanini MLO et al (2023) Application of the solid-state fermentation process and its variations in PHA production: a review. Arch Microbiol 205:1–16

    Article  Google Scholar 

  • Pires EBE, de Freitas AJ, Souza FFE et al (2019) Production of fungal phytases from agroindustrial byproducts for pig diets. Sci Rep 9(1):9256

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirgozliev V, Bedford MR, Rose SP, Whiting IM, Oluwatosin OO, Oso AO, Oke FO, Ivanova SG, Staykova GP (2017) Phosphorus utilisation and growth performance of broiler chicken fed diets containing graded levels of supplementary myo-inositol with and without exogenous phytase. J World Poul Res 7(1):1–10

    Google Scholar 

  • Prado Barragán LA, Figueroa JJB, Rodríguez Durán LV et al (2016) Fermentative production methods. In: Poltronieri P, D’Urso OF (eds) Biotransformation of agricultural waste and by-products in the 4F economy: the food, feed, fiber, fuel (4F) economy. Elsevier, Amsterdam, pp 189–217

    Chapter  Google Scholar 

  • Priya, Pragya, Virmani I et al (2023) Role of microbial phytases in improving fish health. Rev Aquac. https://doi.org/10.1111/raq.12790

    Article  Google Scholar 

  • Pragya, Sharma KK, Kumar A et al (2021) Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Crit Rev Food Sci Nutr 2021:1–23

    Google Scholar 

  • Pragya, Sharma KK, Kumar S et al (2023) Enhanced production and immobilization of phytase from Aspergillus oryzae: a safe and ideal food supplement for improving nutrition. Lett Appl Microbiol 76(2):ovac077

    PubMed  Google Scholar 

  • Pragya Sharma KK, Singh B (2023) Phytase from Aspergillus oryzae SBS50: Biocatalytic reduction of antinutritional factor and exhibiting vanadium-dependent haloperoxidase activity. Biocatal Agric Biotechnol 52:102840

    Article  CAS  Google Scholar 

  • Puhl AA, Greiner R, Selinger LB (2008) A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int J Biochem Cell Biol 40:2053–2064

    Article  PubMed  CAS  Google Scholar 

  • Pujol A, Sanchis P, Grases F, Masmiquel L (2023) Phytate intake, health and disease:“let thy food be thy medicine and medicine be thy food.” Antioxidants 12(1):146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puppala KR, Ravi Kumar V, Khire J et al (2019) Dephytinizing and probiotic potentials of Saccharomyces cerevisiae (NCIM 3662) strain for amelioration of nutritional quality of functional foods. Probiotics Antimicrob Proteins 11:604–617

    Article  PubMed  CAS  Google Scholar 

  • Ranjan B, Satyanarayana T (2016) Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris and applications. Mol Biotechnol 58:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ranjan B, Singh B, Satyanarayana T (2015) Characteristics of recombinant phytase (rSt-Phy) of the thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods. Appl Biochem Biotechnol 177:1753–1766

    Article  PubMed  CAS  Google Scholar 

  • Renirie R, Pierlot C, Aubry JM et al (2003) Vanadium chloroperoxidase as a catalyst for hydrogen peroxide disproportionation to singlet oxygen in mildly acidic aqueous environment. Adv Synth Catal 345:849–858

    Article  CAS  Google Scholar 

  • Rizwanuddin S, Kumar V, Naik B et al (2023a) Microbial phytase: their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. J Agric Food Res 12:100559

    CAS  Google Scholar 

  • Rizwanuddin S, Kumar V, Singh P et al (2023b) Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Front Microbiol 14:1127249

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez YE, Laitano MV, Pereira NA et al (2018) Exogenous enzymes in aquaculture: Alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture 490:35–43

    Article  CAS  Google Scholar 

  • Sadaf N, Haider MZ, Iqbal N, Abualreesh MH, Alatawi A (2022) Harnessing the phytase production potential of soilborne fungi from wastewater irrigated fields based on eco-cultural optimization under shake flask method. Agriculture 12(1):103

    Article  CAS  Google Scholar 

  • Sagar Verma V, Kumar Jain H, Kumar Ramchandra Badwaik H et al (2022) Statistical optimization of oxidative derivatization of polyethylene glycol to polyethylene carboxylate using custom design approach. Int J Health Sci (Qassim) 6:7086–7097

    Google Scholar 

  • Sanangelantoni AM, Malatrasi M, Trivelloni E et al (2018) A novel β-propeller phytase from the dioxin-degrading bacterium Sphingomonas wittichii RW-1. Appl Microbiol Biotechnol 102:8351–8358

    Article  PubMed  CAS  Google Scholar 

  • Sandhya A, Sridevi A, Suvarnalathadevi P (2019) Biochemical characterization of phytase purified from Aspergillus niger S2. EurAsian J Biosci 13:99–103

    CAS  Google Scholar 

  • Sanni DM, Lawal OT, Enujiugha VN (2019) Purification and characterization of phytase from Aspergillus fumigatus isolated from African giant snail (Achatina fulica). Biocatal Agric Biotechnol 17:225–232

    Article  Google Scholar 

  • Sapna, Singh B (2014) Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran. Appl Biochem Biotechnol 173:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Sapna, Singh B (2015) Biocatalytic potential of protease-resistant phytase of Aspergillus oryzae SBS50 in ameliorating food nutrition. Biocatal Biotransform 33:167–174

    Article  CAS  Google Scholar 

  • Sapna, Singh B (2017a) Purification and characterization of a protease-resistant phytase of Aspergillus oryzae SBS50 whose properties make it exceptionally useful as a feed supplement. Int J Biol Macromol 103:458–466

    Article  PubMed  CAS  Google Scholar 

  • Sapna, Singh B (2017b) Free and immobilized Aspergillus oryzae SBS50 producing protease-resistant and thermostable phytase. 3 Biotech 7:1–8

    Article  Google Scholar 

  • Sapna Singh B (2017) Free and immobilized Aspergillus oryzae SBS50 producing protease-resistant and thermostable phytase. 3 Biotech 7(3):213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena A, Verma M, Singh B et al (2020) Characteristics of an acidic phytase from Aspergillus aculeatus APF1 for dephytinization of biofortified wheat genotypes. Appl Biochem Biotechnol 191:679–694

    Article  PubMed  CAS  Google Scholar 

  • Saxena A, Verma M, Singh B, Sangwan P, Yadav AN, Dhaliwal HS, Kumar V (2020) Characteristics of an acidic phytase from Aspergillus aculeatus APF1 for dephytinization of biofortified wheat genotypes. Appl Biochem Biotechnol 191:679–694

    Article  PubMed  CAS  Google Scholar 

  • Shah PC, Kumar VR, Dastager SG et al (2017) Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express 7(1):1–11

    Article  Google Scholar 

  • Shahryari Z, Fazaelipoor MH, Setoodeh P et al (2018) Utilization of wheat straw for fungal phytase production. Int J Recycl Org Waste Agric 7:345–355

    Article  Google Scholar 

  • Sharma A, Ahluwalia O, Tripathi AD et al (2020) Phytases and their pharmaceutical applications: mini-review. Biocatal Agric Biotechnol 23:101439

    Article  Google Scholar 

  • Shivanna GB, Venkateswaran G (2014) Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci World J. https://doi.org/10.1155/2014/392615

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2008) Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresour Technol 99:2824–2830

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011a) Phytases from thermophilic molds: their production, characteristics and multifarious applications. Process Biochem 46:1391–1398

    Article  CAS  Google Scholar 

  • Singh B, Satyanarayana T (2011b) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87

    CAS  Google Scholar 

  • Singh B, Satyanarayana T (2015) Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. J Anim Physiol Anim Nutr (Berl) 99:646–660

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Kumari A, Gakhar SK, Singh B (2015) Enhanced cost-effective phytase production by Aspergillus niger and its applicability in dephytinization of food ingredients. Microbiology (Russian Fed) 84:219–226

    CAS  Google Scholar 

  • Singh B, Sharma KK, Kumari A et al (2018) Molecular modeling and docking of recombinant HAP-phytase of a thermophilic mould Sporotrichum thermophile reveals insights into molecular catalysis and biochemical properties. Int J Biol Macromol 115:501–508

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Boukhris I, Pragya et al (2020) Contribution of microbial phytases to the improvement of plant growth and nutrition: a review. Pedosphere 30:295–313

    Article  CAS  Google Scholar 

  • Soccol CR, da Costa ESF, Letti LAJ et al (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 1:52–71

    Article  Google Scholar 

  • Sodhi AS, Sharma N, Bhatia S et al (2022) Insights on sustainable approaches for production and applications of value added products. Chemosphere 286:131623

    Article  PubMed  CAS  Google Scholar 

  • Song HY, El Sheikha AF, Hu DM (2019) The positive impacts of microbial phytase on its nutritional applications. Trends Food Sci Technol 86:553–562

    Article  CAS  Google Scholar 

  • Soni SK, Sarkar S, Selvakannana PR et al (2015) Intrinsic therapeutic and biocatalytic roles of ionic liquid mediated self-assembled platinum–phytase nanospheres. RSC Adv 5:62871–62881

    Article  CAS  Google Scholar 

  • Srivastava N, Srivastava M, Ramteke PW et al (2019) Solid-state fermentation strategy for microbial metabolites production: an overview. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering: microbial secondary metabolites biochemistry and applications. Elsevier, Amsterdam, pp 345–354

    Chapter  Google Scholar 

  • Suresh S, Radha KV (2015) Effect of a mixed substrate on phytase production by Rhizopus oligosporus MTCC 556 using solid state fermentation and determination of dephytinization activities in food grains. Food Sci Biotechnol 24:551–559

    Article  CAS  Google Scholar 

  • Tanaka T, Izawa S, Inoue Y (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280:42078–42087

    Article  PubMed  CAS  Google Scholar 

  • Tanruean K, Penkhrue W, Kumla J et al (2021) Valorization of lignocellulosic wastes to produce phytase and cellulolytic enzymes from a thermophilic fungus, Thermoascus aurantiacus SL16W, under semi-solid state fermentation. J Fungi 7:286

    Article  CAS  Google Scholar 

  • Tian M, Yuan Q (2016) Optimization of phytase production from potato waste using Aspergillus ficuum. 3 Biotech 6(2):256

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushasree MV, Vidya J, Pandey A (2014) Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. Biotechnol Lett 36:85–91

    Article  PubMed  CAS  Google Scholar 

  • Vashishth A, Tehri N, Tehri P et al (2023) Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2466

    Article  PubMed  Google Scholar 

  • Vats P, Banerjee UC (2005) Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J Ind Microbiol Biotechnol 32:141–147

    Article  PubMed  CAS  Google Scholar 

  • van de Velde F, Lourenço N, Bakker M et al (2000) Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 69:286–291

    Article  PubMed  Google Scholar 

  • Venkataraman S, Vaidyanathan VK (2023) Dephytinization of wheat and rice bran by cross-linked enzyme aggregates of Mucor indicus phytase: a viable prospect for food and feed industries. J Sci Food Agric 103:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • Walk CL, Santos TT, Bedford MR (2014) Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poul Sci 93(5):1172–1177

    Article  CAS  Google Scholar 

  • Walk CL, Bedford MR, Olukosi OA (2018) Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poul Sci 97(4):1155–1162

    Article  CAS  Google Scholar 

  • Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2(10):1987–1992

    Article  PubMed  CAS  Google Scholar 

  • Wang ZH, Dong XF, Zhang GQ et al (2017) Waste vinegar residue as substrate for phytase production. Waste Manag Res J Sustain Circ Econ 29:1262–1270

    Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon AP (1998) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65(2):367–373

    Article  Google Scholar 

  • Wyss M, Pasamontes L, Friedlein A, Rémy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Röthlisberger U, Kusznir E, (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65(2):359–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao K, Harrison MJ, Wang ZY (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta 222:27–36

    Article  PubMed  CAS  Google Scholar 

  • Yu P, Wang XT, Liu JW (2015) Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated. Antarct J Basic Microbiol 55(8):1029–1039

    Article  CAS  Google Scholar 

  • Zeller E, Schollenberger M, Witzig M, Shastak Y, Kühn I, Hoelzle LE, Rodehutscord M (2015) Interactions between supplemented mineral phosphorus and phytase on phytate hydrolysis and inositol phosphates in the small intestine of broilers. Poul Sci 94(5):1018–1029

    Article  CAS  Google Scholar 

  • Zhou Y, Anoopkumar AN, Tarafdar A et al (2022) Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: a review. Environ Pollut 308:119703

    Article  PubMed  CAS  Google Scholar 

  • Zsheng L, Wang J, Cai RJ et al (2023) Heat dissipation performance improvement of a solid-state fan using copper foams as collecting electrode. Int J Heat Mass Transf 202:123730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BS and Pragya wrote the main text of the manuscript. Pragya and BS prepared all the tables and figures, BS, SKT, DS, SK and VM improved the text and designed all the figures. All authors edited the original manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bijender Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Pragya, Tiwari, S.K. et al. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 40, 22 (2024). https://doi.org/10.1007/s11274-023-03783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03783-1

Keywords

Navigation