Skip to main content
Log in

Endophytic insect pathogenic fungi-host plant-herbivore mutualism: elucidating the mechanisms involved in the tripartite interactions

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Various techniques used by crop plants to evade insect pests and pathogen attacks have been documented. Among these, plant defense strategies induced by endophytic insect pathogenic fungi are arguably one of the most discussed. Endophytic fungi frequently colonize plants and inhabit their internal tissues for a portion of their lifespan without producing visible symptoms of the disease. This phenomenon is widespread and diverse in both natural and agricultural ecosystems, and is present in almost all plant organs. Many fungi can obtain nutrients by infecting and killing insects, and this ability has been developed numerous times in different fungal lineages. These species mainly consist of those in the order Hypocreales (Ascomycota), where the generalist insect pathogens, Beauveria sp. (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae) are two of the most studied endophytic entomopathogenic fungal genera. However, most fungi that kill insects do not survive in the tissues of living plants. The data published thus far show a high degree of variability and do not provide consistent explanations for the underlying mechanisms that may be responsible for these effects. This implies that available knowledge regarding the colonization of plant tissues by endophytic insect pathogenic fungi, the effects of colonization on plant metabolism, and how this contributes to a decrease in herbivore and pathogens damage is limited. To adequately utilize fungal-based products as biological control agents, these products must be effective and the reduction of pests and infection must be consistent and similar to that of chemical insecticides after application. This article discusses this possibility and highlights the benefits and the specific techniques utilized by endophytically challenged plants in invading insect pests and disease pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abro MA, Sun X, Li X, Jatoi GH, Guo L-D (2019) Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. Plant Pathol J 35(6):598

    Article  PubMed  PubMed Central  Google Scholar 

  • Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61(3):215–221

    Article  Google Scholar 

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27(11):1437–1441

    Article  Google Scholar 

  • Akutse KS, Maniania N, Fiaboe K, Van den Berg J, Ekesi S (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6 (4):293–301

  • Althouse C, Petersen B, McEwen L (1997) Effects on young american kestrels (Falco sparverius) exposed to Beauveria bassiana bioinsecticide. Bull Environ Contam Toxicol 59:507–512

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47(3):229–236

    Article  PubMed  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100(26):15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, De Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Azevedo JLd M, Júnior W, Araújo W (2003) Importancia dos microrganismos endofiticos na agricultura. Revisão Anual de Patologia de Plantas 2:333–371

    Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Afolabi OG, Hussain M, Qasim M, Wang L (2018) Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: an insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol Res 217:34–50

    Article  PubMed  Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Qasim M, Ramos Aguila LC, Wang F, Keppanan R, Wang L (2019) Endophytic Beauveria bassiana in foliar-treated Citrus limon plants acting as a growth suppressor to three successive generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects 10(6):176

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamisile BS, Senyo Akutse K, Dash CK, Qasim M, Ramos Aguila LC, Ashraf HJ, Huang W, Hussain M, Chen S, Wang L (2020) Effects of seedling age on colonization patterns of Citrus limon plants by endophytic Beauveria bassiana and metarhizium anisopliae and their influence on seedlings growth. J Fungi 6(1):29

    Article  CAS  Google Scholar 

  • Bamisile BS, Akutse KS, Siddiqui JA, Xu Y (2021a) Model application of entomopathogenic fungi as alternatives to chemical pesticides: prospects, challenges, and insights for next-generation sustainable agriculture. Front Plant Sci 12:741804

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamisile BS, Siddiqui JA, Akutse KS, Ramos Aguila LC, Xu Y (2021b) General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 10(10):2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barelli L, Moonjely S, Behie SW, Bidochka MJ (2016) Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol Biol 90:657–664

    Article  CAS  PubMed  Google Scholar 

  • Bark YG, Lee DG, Kang S, Kim Y (1996) Antibiotic properties of an entomopathogenic fungus, Beauveria bassiana, on Fusarium oxysporum and Botrytis cinerea. Korean Journal of Plant Pathology (Korea Republic)

  • Barra-Bucarei L, France Iglesias A, Gerding González M, Silva Aguayo G, Carrasco-Fernández J, Castro JF, Ortiz Campos J (2019) Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two solanaceae crops. Microorganisms 8(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  • Batta YA (2013) Efficacy of endophytic and applied Metarhizium anisopliae (Metch.) Sorokin (Ascomycota: Hypocreales) against larvae of Plutella xylostella L.(Yponomeutidae: Lepidoptera) infesting Brassica napus plants. Crop Prot 44:128–134

    Article  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80(5):1553–1560

    Article  PubMed  PubMed Central  Google Scholar 

  • Behie S, Zelisko P, Bidochka M (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577

    Article  CAS  PubMed  Google Scholar 

  • Behie SW, Jones SJ, Bidochka MJ (2015) Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13:112–119

  • Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ (2017) Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun 8(1):14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Brodeur J (2001) Pre-inoculation of Ri T-DNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiological and Molecular Plant Pathology 58 (3):133–146

  • Bing LA, Lewis LC (1991) Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 20(4):1207–1211

    Article  Google Scholar 

  • Bing LA, Lewis LC (1992) Endophytic Beauveria bassiana (Balsamo) Vuillemin in corn: the influence of the plant growth stage and Ostrinia nubilalis (Hübner). Biocontrol Sci Technol 2(1):39–47

    Article  Google Scholar 

  • Biswas C, Dey P, Satpathy S, Satya P, Mahapatra B (2013) Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica 41:17–21

    Article  Google Scholar 

  • Braga GU, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001) Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus metarhizium anisopliae. Photochem Photobiol 74(5):734–739

    Article  CAS  PubMed  Google Scholar 

  • Braga GU, Rangel DE, Flint SD, Miller CD, Anderson AJ, Roberts DW (2002) Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia 94 (6):912–920

  • Branine M, Bazzicalupo A, Branco S (2019) Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog 15(7):e1007831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt T, Ibrahim L, Clark S, Beckett A (1995) The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles. Mycol Res 99(8):945–950

    Article  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Introduction-fungal biological control agents: progress, problems and potential. Fungi as biocontrol agents: progress, problems and potential. CABI publishing Wallingford UK, pp 1–8

  • Butt T, Coates C, Dubovskiy I, Ratcliffe N (2016) Entomopathogenic fungi: new insights into host–pathogen interactions. Adv Genet 94:307–364

    Article  CAS  PubMed  Google Scholar 

  • Buzi A, Chilosi G, De Sillo D, Magro P (2004) Induction of resistance in melon to Didymella bryoniae and Sclerotinia sclerotiorum by seed treatments with acibenzolar-S‐methyl and methyl jasmonate but not with salicylic acid. J Phytopathol 152(1):34–42

    Article  CAS  Google Scholar 

  • Campos ÂD, Ferreira AG, Hampe MMV, Antunes IF, Brancão N, Silveira EP, Silva JBd, Osório VA (2003) Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Braz J Plant Physiol 15:129–134

    Article  CAS  Google Scholar 

  • Canassa F, Tall S, Moral RA, de Lara IA, Delalibera I Jr, Meyling NV (2019) Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biological Control 132:199–208

  • Carroll G (1986) The biology of endophytism in plants with particular reference to woody perennials. Microbiol Phyllosphere :203–222

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    Article  Google Scholar 

  • Carroll G (1991) Fungal associates of woody plants as insect antagonists in leaves and stems. Microbial mediation of plant-herbivore interactions:253–271

  • Castillo Lopez D, Zhu-Salzman K, Ek-Ramos MJ, Sword GA (2014) The entomopathogenic fungal endophytes purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9(8):e103891

    Article  PubMed  PubMed Central  Google Scholar 

  • Charnley A, Collins S (2007) 10 entomopathogenic fungi and their role in pest control. Environ Microb Relationships 4:159

    Article  Google Scholar 

  • Chen X, Li L, Hu Q, Zhang B, Wu W, Jin F, Jiang J (2015) Expression of dsRNA in recombinant isaria fumosorosea strain targets the TLR7 gene in Bemisia tabaci. BMC Biotechnol 15(1):1–8

    Article  Google Scholar 

  • Cheng C, Li D, Qi Q, Sun X, Anue MR, David BM, Zhang Y, Hao X, Zhang Z, Lai Z (2020) The root endophytic fungus Serendipita indica improves resistance of banana to Fusarium oxysporum f. sp. cubense tropical race 4. Eur J Plant Pathol 156:87–100

    Article  CAS  Google Scholar 

  • Cherry A, Lomer C, Djegui D, Schulthess F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. Biocontrol 44:301–327

    Article  Google Scholar 

  • Cherry AJ, Banito A, Djegui D, Lomer C (2004) Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. Int J pest Manage 50(1):67–73

    Article  Google Scholar 

  • Choudhary DK, Prakash A, Johri B (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Clark CL, Miller JD, Whitney NJ (1989) Toxicity of conifer needle endophytes to spruce budworm. Mycol Res 93(4):508–512

    Article  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92(1):1–12

    Article  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21(1):275–297

    Article  Google Scholar 

  • Clifton EH, Jaronski ST, Coates BS, Hodgson EW, Gassmann AJ (2018) Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13(3):e0194815

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CM, Poinssot B, Pozo MJ (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19(10):1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cools H, Ishii H (2002) Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol Mol Plant Pathol 61(5):273–280

    Article  CAS  Google Scholar 

  • Culliney TW (2014) Crop losses to arthropods. Integr Pest Management: Pesticide Probl 3:201–225

    Article  Google Scholar 

  • Da Paz FB, Menezes M (2005) Fungos endofíticos em sementes de girassol e diferenciação morfológica e enzimática de espécies de Fusarium. Summa phytopatológica 31(1):87–93

    Google Scholar 

  • da Silva CCM, Marques EJ, de Oliveira JV, de Albuquerque AC, dos Passos EM, Guimarães J (2016) Effects of entomopathogenic fungi on different developmental stages of Cotesia flavipes (Cam.) A parasitoid of Diatraea flavipennella (Box)(Lepidoptera: Crambidae). Semina: Ciências Agrárias 37(1):25–31

    Google Scholar 

  • Dash CK, Bamisile BS, Keppanan R, Qasim M, Lin Y, Islam SU, Hussain M, Wang L (2018) Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L.(Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microbial pathogenesis 125:385–392

  • De Kesel J, Conrath U, Flors V, Luna E, Mageroy MH, Mauch-Mani B, Pastor V, Pozo MJ, Pieterse CM, Ton J (2021) The induced resistance lexicon: Do’s and don’ts. Trends Plant Sci 26(7):685–691

    Article  PubMed  Google Scholar 

  • Elena GJ, Beatriz PJ, Alejandro P, Lecuona R (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5(1):22–27

    Google Scholar 

  • Elsherbiny EA, Taher MA, Elsebai MF (2019) Activity of purpureocillium lilacinum filtrates on biochemical characteristics of Sclerotinia sclerotiorum and induction of defense responses in common bean. Eur J Plant Pathol 155:39–52

    Article  CAS  Google Scholar 

  • Emami F, Alichi M, Minaei K (2013) Interaction between the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales) and the parasitoid wasp, Aphidius colemani Viereck (Hymenoptera: Braconidae). J Entomol Acarological Res 45(1):e4–e4

    Article  Google Scholar 

  • Espinosa-García FJ, Langenheim JH (1991) Effect of some leaf essential oil phenotypes from coastal redwood on growth of its predominant endophytic fungus, Pleuroplaconema sp. J Chem Ecol 17:1837–1857

    Article  PubMed  Google Scholar 

  • Fadiji AE, Babalola OO (2020a) Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol 8:467

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadiji AE, Babalola OO (2020b) Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 27(12):3622–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J-q, Chen X-r, Hu Q-b (2013) Effects of destruxin A on hemocytes morphology of Bombyx mori. J Integr Agric 12(6):1042–1048

    Article  Google Scholar 

  • Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, Tong S (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proceedings of the National Academy of Sciences 114 (9):E1578-E1586

  • Fang W, St. Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154(3):1549–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanning P, Grieshop M, Isaacs R (2018) Efficacy of biopesticides on spotted wing drosophila, Drosophila suzukii Matsumura in fall red raspberries. J Appl Entomol 142(1–2):26–32

    Article  CAS  Google Scholar 

  • Fargues J, Goettel M, Smits N, Ouedraogo A, Vidal C, Lacey L, Lomer C, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic hyphomycetes. Mycopathologia 135(3):171–181

    Article  CAS  PubMed  Google Scholar 

  • Flori P, Roberti R (1993) Treatment of onion bulbs with antagonistic fungi for the control of Fusarium oxysporum f. sp. cepae. Difesa delle Piante 16 (4):5–12

  • Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, Dourado Neto D (2021) Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255(7):2751–2760

    Article  Google Scholar 

  • Gao F-k, Dai C-c, Liu X-z (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

    Google Scholar 

  • García-Espinoza F, García M, Quesada-Moraga E, Yousef-Yousef M (2023a) Entomopathogenic fungus-related Priming Defense Mechanisms in Cucurbits Impact Spodoptera littoralis (Boisduval) Fitness. Appl Environ Microbiol 89(8):e00940–e00923

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Espinoza F, Quesada-Moraga E, García del Rosal MJ, Yousef-Yousef M (2023b) Entomopathogenic Fungi-mediated solubilization and induction of Fe related genes in Melon and Cucumber plants. J Fungi 9(2):258

    Article  Google Scholar 

  • Garrido-Jurado I, Resquín-Romero G, Amarilla S, Ríos-Moreno A, Carrasco L, Quesada-Moraga E (2017) Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J Pest Sci 90:319–330

    Article  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258

    Article  CAS  PubMed  Google Scholar 

  • Goettel MS, Jaronski ST (1997) Safety and registration of microbial agents for control of grasshoppers and locusts. Mem Entomol Soc Can 129(S171):83–99

    Article  Google Scholar 

  • Goettel M, Inglis G, Wraight S (2000) Fungi. In: Kaya HK (ed) Field Manual of Techniques in Invertebrate Pathology: application and evaluation of pathogens for control of insects and other Invertebrate Pests(LA Lacey and. Kluwer Academic, Dordrecht

    Google Scholar 

  • González V, Armijos E, Garcés-Claver A (2020) Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy 10(6):820

    Article  Google Scholar 

  • González-Guzmán A, Rey M-D, Froussart E, Quesada-Moraga E (2022) Elucidating the effect of endophytic entomopathogenic fungi on bread wheat growth through signaling of immune response-related hormones. Appl Environ Microbiol 88(18):e00882–e00822

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E (2019a) Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J Pest Sci 92:1271–1281

    Article  Google Scholar 

  • González-Mas N, Sánchez-Ortiz A, Valverde-García P, Quesada-Moraga E (2019b) Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10(6):165

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Mas N, Gutiérrez-Sánchez F, Sánchez-Ortiz A, Grandi L, Turlings TC, Manuel Muñoz-Redondo J, Moreno-Rojas JM, Quesada-Moraga E (2021) Endophytic colonization by the entomopathogenic fungus Beauveria bassiana affects plant volatile emissions in the presence or absence of chewing and sap-sucking insects. Front Plant Sci 12:660460

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF (2022) The entomopathogenic fungus metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. Plant Physiol Biochem 176:34–43

    Article  PubMed  Google Scholar 

  • Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control 95:40–48

  • Griffin M, Ownley B, Klingeman W, Pereira R (2006) Evidence of induced systemic resistance with Beauveria bassiana against Xanthomonas in cotton. Phytopathology 96 (6)

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110(12):1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Gualandi RJ, Augé RM, Kopsell DA, Ownley BH, Chen F, Toler HD, Dee MM, Gwinn KD (2014) Fungal mutualists enhance growth and phytochemical content in Echinacea purpurea. Symbiosis 63:111–121

    Article  CAS  Google Scholar 

  • Gunatilaka AL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55(1):34–41

    Article  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? vol 55. Elsevier

  • Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112(11):1335–1343

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84(4):377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Björkman T, Ondik K, Shoresh M (2008) Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks on pest Management 19(1):24

    Article  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Ann Rev Entomol 54:323–342

    Article  CAS  Google Scholar 

  • Hu S, Bidochka M (2021) Root colonization by endophytic insect-pathogenic fungi. J Appl Microbiol 130(2):570–581

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Cortés KH, González-Hernández H, Guzmán-Franco AW, Ortega-Arenas LD, Villanueva-Jiménez JA, Robles-Bermúdez A (2018) Interactions between entomopathogenic fungi and Tamarixia radiata (Hymenoptera: Eulophidae) in Diaphorina citri (Hemiptera: Liviidae) populations under laboratory conditions. J Pest Sci 91:373–384

    Article  Google Scholar 

  • Imoulan A, Hussain M, Kirk PM, El Meziane A, Yao Y-J (2017) Entomopathogenic fungus Beauveria: host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J Asia Pac Entomol 20(4):1204–1212

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. Fungi as biocontrol agents: progress, problems and potential. CABI publishing Wallingford UK, pp 23–69

  • Inyang EN, McCartney HA, Oyejola B, Ibrahim L, Archer SA (2000) Effect of formulation, application and rain on the persistence of the entomogenous fungus metarhizium anisopliae on oilseed rape. Mycol Res 104(6):653–661

    Article  Google Scholar 

  • Jaber LR (2018) Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta 248:1525–1535

    Article  CAS  PubMed  Google Scholar 

  • Jaber LR, Alananbeh KM (2018) Fungal entomopathogens as endophytes reduce several species of Fusarium causing crown and root rot in sweet pepper (Capsicum annuum L). Biol Control 126:117–126

    Article  Google Scholar 

  • Jaber LR, Araj S-E (2018) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control 116:53–61

    Article  Google Scholar 

  • Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103:187–195

  • Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci Technol 27(1):28–41

    Article  Google Scholar 

  • Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45

    Article  Google Scholar 

  • Jaber LR, Salem NM (2014) Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Sci Technol 24(10):1096–1109

    Article  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185

    Article  Google Scholar 

  • Jarrahi A, Safavi SA (2016) Sublethal effects of Metarhizium anisopliae on life table parameters of Habrobracon hebetor parasitizing Helicoverpa armigera larvae at different time intervals. BioControl 61:167–175

  • Jensen RE, Enkegaard A, Steenberg T (2019) Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS One 14 (10):e0223616

  • Jia Y, Zhou J-Y, He J-X, Du W, Bu Y-Q, Liu C-H, Dai C-C (2013) Distribution of the entomopathogenic fungus Beauveria bassiana in rice ecosystems and its effect on soil enzymes. Curr Microbiol 67:631–636

    Article  CAS  PubMed  Google Scholar 

  • Johnson DL, Smits JE, Jaronski ST, Weaver DK (2002) Assessment of health and growth of ring-necked pheasants following consumption of infected insects or conidia of entomopathogenic fungi, Metarhizium anisopliae var. acridum and Beauveria bassiana, from Madagascar and North America. Journal of Toxicology and Environmental Health Part A 65 (24):2145–2162

  • Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J 99(5):1377–1381

    Article  Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manage Science: Former Pesticide Sci 66(5):555–564

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, ur Rehman S, Kim J-G, Lee I-J (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Kim KC, Roberts DW (2005) Impact of the entomopathogenic fungus verticillium lecanii on development of an aphid parasitoid, Aphidius colemani. J Invertebr Pathol 88(3):254–256

    Article  PubMed  Google Scholar 

  • Kim HY, Choi G, Lee H, Lee SW, Lim H, Jang K, Son S, Lee S, Cho K, Sung N (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44(3):332–337

    Article  PubMed  Google Scholar 

  • Kim JS, Je YH, Skinner M, Parker BL (2013) An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Pest management science 69 (5):576–581

  • Kinkel L Fungal community dynamics. In: Microbial ecology of leaves, 1991. Springer, pp 253–270

  • Klieber J, Reineke A (2016) The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta. J Appl Entomol 140(8):580–589

    Article  CAS  Google Scholar 

  • Knoch T, Faeth S, Arnott D (1993) Fungal endophytes: plant mutualists via seed predation and germination. Bull Ecol Soc Am 74(Abstr):313

    Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in plant science:845

  • Krasnoff SB, Keresztes I, Gillilan RE, Szebenyi DM, Donzelli BG, Churchill AC, Gibson DM (2007) Serinocyclins a and B, cyclic heptapeptides from Metarhizium anisopliae. J Nat Prod 70(12):1919–1924

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kalita P (2017) Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuzhuppillymyal-Prabhakarankutty L, Tamez-Guerra P, Gomez-Flores R, Rodriguez-Padilla MC, Ek-Ramos MJ (2020) Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World J Microbiol Biotechnol 36:1–10

    Article  Google Scholar 

  • Lacey LA (2016) Microbial control of insect and mite pests: from theory to practice. Academic Press

  • Lacey LA, Neven LG (2006) The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 91(3):195–198

    Article  PubMed  Google Scholar 

  • Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144

    Article  CAS  PubMed  Google Scholar 

  • Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Laird M, Lacey LA, Davidson EW (1990) Safety of microbial insecticides. CRC Press Inc.

  • Landa BB, López-Díaz C, Jiménez-Fernández D, Montes-Borrego M, Muñoz-Ledesma FJ, Ortiz-Urquiza A, Quesada-Moraga E (2013) In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J Invertebr Pathol 114(2):128–138

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen J, Koricheva J, Helander M, Haukioja E (1999) Densities of endophytic fungi and performance of leafminers (Lepidoptera: Eriocraniidae) on birch along a pollution gradient. Environ Pollut 104(1):99–105

    Article  CAS  Google Scholar 

  • Latch G, Christensen M, Gaynor D (1985) Aphid detection of endophyte infection in tall fescue. New Z J Agricultural Res 28(1):129–132

    Article  Google Scholar 

  • Lechenet M, Dessaint F, Py G, Makowski D, Munier-Jolain N (2017) Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat Plants 3(3):1–6

    Article  Google Scholar 

  • Lee S, Yeo W, Jee H, Shin S, Moon Y (1999) Effect of entomopathogenic fungi on growth of cucumber and rhizoctonia solani. J for Sci 62:118–125

    Google Scholar 

  • Liao X, Fang W, Lin L, Lu H-L, Leger RJS (2013) Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS ONE 8(10):e78118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, O’Brien TR, Fang W, St. Leger RJ (2014) The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol 98:7089–7096

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Lovett B, Fang W, St Leger RJ (2017) Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163(7):980–991

    Article  CAS  PubMed  Google Scholar 

  • Llorens E, García-Agustín P, Lapeña L (2017) Advances in induced resistance by natural compounds: towards new options for woody crop protection. Scientia Agricola 74:90–100

    Article  CAS  Google Scholar 

  • Lopez DC, Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control 89:53–60

  • Lovett B, St. Leger RJ (2017) The insect pathogens. Microbiol Spectr 5(2):52

    Article  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92 (12)

  • Mahar A, Jan N, Mahar GM, Mahar AQ (2008) Control of insects with entomopathogenic bacterium Xenorhabdus nematophila and its toxic secretions. Int J Agric Biol 10(1):52–56

    Google Scholar 

  • Manganyi MC, Regnier T, Kumar A, Bezuidenhout CC, Ateba CN (2018) Phylogenetic analysis and diversity of novel endophytic fungi isolated from medicinal plant Sceletium tortuosum. Phytochemistry letters 27:36–43

  • Manoussopoulos Y, Mantzoukas S, Lagogiannis I, Goudoudaki S, Kambouris M (2019) Effects of three strawberry entomopathogenic fungi on the prefeeding behavior of the aphid Myzus persicae. J Insect Behav 32(2):99–108

    Article  Google Scholar 

  • Mantzoukas S, Eliopoulos PA (2020) Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Appl Sci 10(1):360

    Article  Google Scholar 

  • Mantzoukas S, Grammatikopoulos G (2020) The effect of three entomopathogenic endophytes of the sweet sorghum on the growth and feeding performance of its pest, Sesamia nonagrioides larvae, and their efficacy under field conditions. Crop Prot 127:104952

    Article  CAS  Google Scholar 

  • Mantzoukas S, Lagogiannis I (2019) Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Appl Sci 9(11):2239

    Article  CAS  Google Scholar 

  • Mantzoukas S, Chondrogiannis C, Grammatikopoulos G (2015) Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomol Exp Appl 154(1):78–87

    Article  Google Scholar 

  • Mantzoukas S, Tamez-Guerra P, Zavala-Garcia F, Lagogiannis I, Ek-Ramos MJ (2022) Entomopathogenic fungi tested in planta on pepper and in field on sorghum, to control commercially important species of aphids. World J Microbiol Biotechnol 38(5):84

    Article  CAS  PubMed  Google Scholar 

  • Mariano R, Lira R, Silveira E, Menezes M (1997) Levantamento de fungos endofíticos e epifíticos em folhas de coqueiro no nordeste do Brasil. I Freqüência da populaçao fúngica e Efeito da Hospedeira Agrotrópica 9:127–134

    Google Scholar 

  • Martinuz A, Schouten A, Sikora RA (2013) Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. Biocontrol 58:95–104

    Article  Google Scholar 

  • Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:1–26

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512

    Article  CAS  PubMed  Google Scholar 

  • McGee P (2002) Reduced growth and deterrence from feeding of the insect pest Helicoverpa armigera associated with fungal endophytes from cotton. Aust J Exp Agric 42(7):995–999

    Article  Google Scholar 

  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75

    Article  CAS  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43(2):145–155

    Article  Google Scholar 

  • Miranda-Fuentes P, Quesada‐Moraga E, Aldebis HK, Yousef‐Naef M (2020) Compatibility between the endoparasitoid Hyposoter didymator and the entomopathogenic fungus metarhizium brunneum: a laboratory simulation for the simultaneous use to control Spodoptera littoralis. Pest Manag Sci 76(3):1060–1070

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AA, Hatcher PE (2017) Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol Control 110:44–55

    Article  Google Scholar 

  • Moonjely S, Barelli L, Bidochka M (2016) Insect pathogenic fungi as endophytes. Adv Genet 94:107–135

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (2022) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic Press

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Muvea AM, Meyhöfer R, Subramanian S, Poehling H-M, Ekesi S, Maniania NK (2014) Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS ONE 9(9):e108242

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R (2001) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry 33 (4–5):603–612

  • Nuangmek W, Aiduang W, Kumla J, Lumyong S, Suwannarach N (2021) Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Front Microbiol 12:634772

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien PA (2017) Biological control of plant diseases. Australas Plant Pathol 46:293–304

    Article  Google Scholar 

  • O’Callaghan M, Brownbridge M (2009) Environmental impacts of microbial control agents used for control of invasive pests. Use of microbes for control and eradication of invasive arthropods:305–327

  • O’Hanlon KA, Knorr K, Jørgensen LN, Nicolaisen M, Boelt B (2012) Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biol Control 63(2):69–78

    Article  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agricultural Sci 144(1):31–43

    Article  Google Scholar 

  • Omkar O (2016) Ecofriendly Pest Management for Food Security. Elsevier Ltd

  • Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM (2004) Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. Emerg Concepts Plant Health Manage 2004:255–269

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98(3):267–270

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128

    Article  Google Scholar 

  • Paixão FR, Fernandes ÉK, Pedrini N (2019) Thermotolerance of fungal conidia. Microbes for Sustainable Insect Pest Management: An Eco-friendly Approach-Volume 1:185–196

  • Pamphile JA, Rocha CL, Azevedo JL (2004) Co-transformation of a tropical maize endophytic isolate of Fusarium verticillioides (synonym F. moniliforme) with gusA and nia genes. Genet Mol Biology 27:253–258

    Article  CAS  Google Scholar 

  • Park Y-H, Mishra RC, Yoon S, Kim H, Park C, Seo S-T, Bae H (2019) Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res 43(3):408–420

    Article  PubMed  Google Scholar 

  • Pascholati S, De Souza V, Cardoso Filho J (2019) Trichoderma: uso na agricultura. Embrapa Soja-Livro científico (ALICE). Brasília-DF Capitulo 7(1):235–246

    Google Scholar 

  • Pereira J, Vieira MC, Azevedo JL (1999) Endophytic fungi from Musa acuminata and their reintroduction into axenic plants. World J Microbiol Biotechnol 15:37–40

    Article  Google Scholar 

  • Peveling R, Demba SA (2003) Toxicity and pathogenicity of Metarhizium anisopliae var. Acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe-toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environ Toxicol Chemistry: Int J 22(7):1437–1447

    CAS  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol Res 105(12):1508–1513

    Article  Google Scholar 

  • Pimentel IC, Kuczkowski FR, Chime MA, Auer CG, Junior AG (2006) Fungos endofíticos em folhas de erva-mate (Ilex paraguariensis A. St.-Hil.). Floresta 36 (1)

  • Polanczyk RA, Pratissoli D, Dalvi LP, Grecco ED, Franco CR (2010) Efeito de beauveria bassiana (bals.) Vuillemin e Metarhizium anisopliae (metsch.) sorokin nos parâmetros biológicos de trichogramma atopovirilia oatman & platner, 1983 (hymenoptera: trichogrammatidae). Ciência e Agrotecnologia 34:1412–1416

  • Powell WA, Klingeman WE, Ownley BH, Gwinn KD (2009) Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). J Entomol Sci 44(4):391–396

    Google Scholar 

  • Qayyum MA, Wakil W, Arif MJ, Sahi ST, Dunlap CA (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol Control 90:200–207

    Article  Google Scholar 

  • Quesada Moraga E (2020) Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production. Biocontrol Sci Technol 30(9):864–877

    Article  Google Scholar 

  • Quesada-Moraga E, Munoz-Ledesma F, Santiago-Alvarez C (2009) Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38(3):723–730

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Moraga E, López-Díaz C, Landa BB (2014) The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLoS ONE 9(2):e89278

    Article  PubMed  PubMed Central  Google Scholar 

  • Quesada-Moraga E, Garrido-Jurado I, Yousef-Yousef M, González-Mas N (2022) Multitrophic interactions of entomopathogenic fungi in BioControl. Biocontrol 67(5):457–472

    Article  Google Scholar 

  • Quesada-Moraga E, González-Mas N, Yousef-Yousef M, Garrido-Jurado I, Fernández-Bravo M (2023) Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J Pest Sci :1–15

  • Ramakuwela T, Hatting J, Bock C, Vega FE, Wells L, Mbata GN, Shapiro-Ilan D (2020) Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests. Biol Control 140:104102

    Article  CAS  Google Scholar 

  • Rashki M, Shirvani A (2013) The effect of entomopathogenic fungus, Beauveria bassiana on life table parameters and behavioural response of Aphis gossypii. Bull Insectol 66(1):85–91

    Google Scholar 

  • Ravensberg WJ (2014) Commercialisation of microbes: present situation and future prospects. Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer, pp 309–317

  • Ravindran K, Akutse KS, Sivaramakrishnan S, Wang L (2016) Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon 120:89–96

  • Raya–Díaz S, Quesada–Moraga E, Barrón V, Del Campillo MC, Sánchez–Rodríguez AR (2017) Redefining the dose of the entomopathogenic fungus metarhizium brunneum (Ascomycota, Hypocreales) to increase Fe bioavailability and promote plant growth in calcareous and sandy soils. Plant Soil 418:387–404

    Article  Google Scholar 

  • Reddy NP, Khan APA, Devi UK, Sharma HC, Reineke A (2009) Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology 12 (4):221–226

  • Reddy GV, Tangtrakulwanich K, Wu S, Miller JH, Ophus VL, Prewett J, Jaronski ST (2014) Evaluation of the effectiveness of entomopathogens for the management of wireworms (Coleoptera: Elateridae) on spring wheat. J Invertebr Pathol 120:43–49

    Article  PubMed  Google Scholar 

  • Redman RS, Rodriguez RJ (2017) The symbiogenic tango: Achieving climate-resilient crops via mutualistic plant-fungal relationships. Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy:71–87

  • Renuka S, Ramanujam B, Poornesha B (2016) Endophytic ability of different isolates of entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin in stem and leaf tissues of maize (Zea mays L). Indian J Microbiol 56(2):126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40(4):524–532

    Article  Google Scholar 

  • Resquín-Romero G, Garrido-Jurado I, Delso C, Ríos-Moreno A, Quesada-Moraga E (2016) Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J Invertebr Pathol 136:23–31

    Article  PubMed  Google Scholar 

  • Ríos-Moreno A, Garrido-Jurado I, Resquín-Romero G, Arroyo-Manzanares N, Arce L, Quesada-Moraga E (2016) Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol science and technology 26 (11):1574–1585

  • Ríos-Moreno A, Quesada-Moraga E, Garrido-Jurado I (2018) Treatments with Metarhizium brunneum BIPESCO5 and EAMa 01/58-Su strains (Ascomycota: Hypocreales) are low risk for the generalist predator Chrysoperla carnea. J Pest Sci 91:385–394

    Article  Google Scholar 

  • Roberts DW (1977) Isolation and development of fungus pathogens of vectors. Biol Regul Vectors :85–93

  • Rodriguez R, White J Jr, Arnold A, Redman aRa (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  CAS  PubMed  Google Scholar 

  • Rojas EC, Jensen B, Jørgensen HJ, Latz MA, Esteban P, Ding Y, Collinge DB (2020) Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control 144:104222

    Article  CAS  Google Scholar 

  • Rondot Y, Reineke A (2019) Endophytic Beauveria bassiana activates expression of defence genes in grapevine and prevents infections by grapevine downy mildew Plasmopara viticola. Plant Pathol 68(9):1719–1731

    Article  CAS  Google Scholar 

  • Rossoni C, Pereira F, Kassab S, Rodrigues A, Barbosa R, Zanuncio J (2016) Development of Eulophidae (Hymenoptera) parasitoids in Diatraea saccharalis (Lepidoptera: Crambidae) pupae exposed to entomopathogenic fungi. Can Entomol 148(6):716–723

    Article  Google Scholar 

  • Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Commun (12):935–936

  • Rubini MR, Silva-Ribeiro RT, Pomella AW, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ broom disease. Int J Biol Sci 1(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6(2):352–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo ML, Scorsetti AC, Vianna MF, Allegrucci N, Ferreri NA, Cabello MN, Pelizza SA (2019a) Effects of endophytic Beauveria bassiana (Ascomycota: Hypocreales) on biological, reproductive parameters and food preference of the soybean pest Helicoverpa gelotopoeon. J King Saud University-Science 31(4):1077–1082

    Article  Google Scholar 

  • Russo ML, Scorsetti AC, Vianna MF, Cabello M, Ferreri N, Pelizza S (2019b) Endophytic effects of Beauveria bassiana on corn (Zea mays) and its herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects 10(4):110

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29(1):319–343

    Article  Google Scholar 

  • Salles II, Blount JW, Dixon RA, Schubert K (2002) Phytoalexin induction and β-1, 3-glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiological and molecular plant pathology 61 (2):89–101

  • Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño ÁM, García-Mina JM, del Campillo MC, Quesada-Moraga E (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol Control 116:90–102

    Article  Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99(1):101–107

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Screen SE, Leger RJS (2000) Cloning, expression, and substrate specificity of a fungal chymotrypsin: evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 275(9):6689–6694

    Article  CAS  PubMed  Google Scholar 

  • Seiedy M, Tork M, Deyhim F (2015) Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Systematic and Applied Acarology 20 (3):241–250

  • Semalulu S, MacPherson J, Schiefer H, Khachatourians G (1992) Pathogenicity of Beauveria bassiana in mice. J Veterinary Med Ser B 39(1–10):81–90

    Article  CAS  Google Scholar 

  • Senthilraja G, Anand T, Kennedy J, Raguchander T, Samiyappan R (2013) Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiol Mol Plant Pathol 82:10–19

    Article  CAS  Google Scholar 

  • Shah P, Goettel M (1999) Directory of microbial control products. Society for invertebrate pathology, Division of microbial control

  • Shah P, Pell J (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61(5):413–423

    Article  CAS  PubMed  Google Scholar 

  • Shawer R, Donati I, Cellini A, Spinelli F, Mori N (2018) Insecticidal activity of Photorhabdus luminescens against Drosophila suzukii. Insects 9(4):148

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen F-T, Yen J-H, Liao C-S, Chen W-C, Chao Y-T (2019) Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11(4):1133

    Article  CAS  Google Scholar 

  • Shrestha G, Enkegaard A, Reddy GV, Skovgård H, Steenberg T (2017) Susceptibility of larvae and pupae of the aphid parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae) to the entomopathogenic fungus Beauveria bassiana. Ann Entomol Soc Am 110(1):121–127

    Article  CAS  Google Scholar 

  • Shrivastava G, Ownley BH, Augé RM, Toler H, Dee M, Vu A, Köllner TG, Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74

    Article  CAS  Google Scholar 

  • Sinno M, Ranesi M, Gioia L, d’Errico G, Woo SL (2020) Endophytic fungi of tomato and their potential applications for crop improvement. Agriculture 10(12):587

    Article  CAS  Google Scholar 

  • Skinner M, Parker BL, Kim JS (2014) Role of entomopathogenic fungi in integrated pest management. Integrated pest management:169–191

  • Stadnik M, Buchenauer H (2000) Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiological and Molecular Plant Pathology 57 (1):25–34

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. Microb Endophytes :17–44

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10(6):717–735

    Article  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  CAS  PubMed  Google Scholar 

  • Tadych M, White JF, Moselio S (2009) Endophytic microbes. Encyclopedia of Microbiology ed M Schaechter:431–442

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biocontrol 54:663–669

    Article  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231 (2):397

  • Valero-Jiménez CA, Wiegers H, Zwaan BJ, Koenraadt CJ, van Kan JA (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49

    Article  PubMed  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98(3):277–279

    Article  PubMed  Google Scholar 

  • Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110(1):4–30

    Article  PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2(4):149–159

    Article  Google Scholar 

  • Veloz-Badillo GM, Riveros-Ramírez J, Angel-Cuapio A, Arce-Cervantes O, Flores-Chávez B, Espitia-López J, Loera O, Garza-López PM (2019) The endophytic capacity of the entomopathogenic fungus Beauveria bassiana caused inherent physiological response in two barley (Hordeum vulgare) varieties. 3 Biotech 9:1–6

    Article  Google Scholar 

  • Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ (2022) Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in plant science 13

  • Veselý D, Koubova D (1994) In vitro effect of entomopathogenic fungi Beauveria bassiana (Bals.-Criv.) Vuill. and Beauveria brongniartii (Sacc.) Petch on phytopathogenic fungi. Ochrana Rostlin 30 (2):113–120

  • Vey A, Hoagland R (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as Biocontrol Agents: Progress, problems and potential. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Curr Sci :46–54

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66(8):3468–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Deshmukh S, Baltruschat H, Kogel K-H (2006) Induction of systemic resistance by the root endophytic fungus Piriformospora indica in Barley. Plant and cell physiology supplement supplement to Plant and Cell Physiology, vol 47. The Japanese Society of Plant Physiologists, pp 096–096

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95(12):1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64(5):1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6(5):808–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp). Biol Control 74:82–88

    Article  Google Scholar 

  • Wei Q-Y, Li Y-Y, Xu C, Wu Y-X, Zhang Y-R, Liu H (2020) Endophytic colonization by Beauveria bassiana increases the resistance of tomatoes against Bemisia tabaci. Arthropod-plant interactions 14:289–300

  • Weng Q, Zhang X, Chen W, Hu Q (2019) Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules 24 (4):664

  • Worapong J, Strobel G, Daisy B, Castillo UF, Baird G, Hess W (2002) Muscodor roseus anam. sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon 81:463–475

    Google Scholar 

  • Wyrebek M, Bidochka MJ (2013) Variability in the insect and plant adhesins, Mad1 and Mad2, within the fungal genus Metarhizium suggest plant adaptation as an evolutionary force. PLoS ONE 8(3):e59357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biology Biotechnol 6(1):48–55

    CAS  Google Scholar 

  • Yang G, Li P, Meng L, Xv K, Dong F, Qiu Y, He L, Lin L (2018) Diversity and communities of culturable endophytic fungi from different tree peonies (geoherbs and non-geoherbs), and their biosynthetic potential analysis. Brazilian J Microbiol 49:47–58

    Article  Google Scholar 

  • Yao S-L, Ying S-H, Feng M-G, Hatting JL (2010) In vitro and in vivo responses of fungal biocontrol agents to gradient doses of UV-B and UV-A irradiation. Biocontrol 55:413–422

    Article  CAS  Google Scholar 

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen X, Xu C, Zhao H, Zhang X, Zeng G, Qian Y, Liu R, Guo N, Mi W (2019) Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proceedings of the National Academy of Sciences 116 (16):7982–7989

  • Zhao X, Hu Z, Hou D, Xu H, Song P (2020) Biodiversity and antifungal potential of endophytic fungi from the medicinal plant Cornus officinalis. Symbiosis 81:223–233

    Article  CAS  Google Scholar 

  • Zheng P, Xia Y, Zhang S, Wang C (2013) Genetics of Cordyceps and related fungi. Appl Microbiol Biotechnol 97:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Kim JJ (2012) Target-oriented dissemination of Beauveria bassiana conidia by the predators, Harmonia axyridis (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) for biocontrol of Myzus persicae. Biocontrol Sci Technol 22(4):393–406

    Article  Google Scholar 

  • Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17 (6):553–596

  • Zimmermann G (2007b) Review on safety of the entomopathogenic fungus metarhizium anisopliae. Biocontrol Sci Technol 17(9):879–920

    Article  Google Scholar 

Download references

Funding

We acknowledge funding support received through Research Fund for International Young Scientists (32150410344), a research grant awarded by the National Natural Science Foundation of China (NSFC).

Author information

Authors and Affiliations

Authors

Contributions

BB and OA designed the review outline. BB, OA, and JS wrote the manuscript. YX reviewed the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Yijuan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamisile, B.S., Afolabi, O.G., Siddiqui, J.A. et al. Endophytic insect pathogenic fungi-host plant-herbivore mutualism: elucidating the mechanisms involved in the tripartite interactions. World J Microbiol Biotechnol 39, 326 (2023). https://doi.org/10.1007/s11274-023-03780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03780-4

Keywords

Navigation