Skip to main content
Log in

Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saffron (Crocus sativus L), an autumn-flowering perennial sterile plant, reproduces vegetatively by underground corms. Saffron has biannual corm–root cycle that makes it an interesting candidate to study microbial dynamics in its rhizosphere and cormosphere (area under influence of corm). Culture independent 16S rRNA gene metagenomic study of rhizosphere and cormosphere of Saffron during flowering stage revealed presence of 22 genera but none of the genus was common in all the three samples. Bulk soil bacterial community was represented by 13 genera with Acidobacteria being dominant. In rhizosphere, out of eight different genera identified, Pseudomonas was the most dominant genus. Cormosphere bacteria comprised of six different genera, dominated by the genus Pantoea. This study revealed that the bacterial composition of all the three samples is significantly different (P < 0.05) from each other. This is the first report on the identification of bacteria associated with rhizosphere, cormosphere and bulk soil of Saffron, using cultivation independent 16S rRNA gene targeted metagenomic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alstrom S, Gerhardson B (1987) Charracterisation of a Serratia plymuthica isolate from plant rhizospheres. Plant Soil 103(2):185–189

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Ambardar S, Vakhlu J (2013) Plant growth promoting bacteia from Crocus sativus. World J Microbiol Biotechnol 29(12):2271–2279

    Article  CAS  Google Scholar 

  • Amman RL, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Andersen SM, Johnsen K, Sørensen J, Nielsen P, Jacobsen CS (2000) Pseudomonas frederiksbergensissp. nov., isolated from soil at a coal gasification site Int. J Syst Evol Microbiol 50:1957–1964

    Article  CAS  Google Scholar 

  • Araujo JF, de Castro AP, Costa MMC, Togawa RC, Pappas Júnior GJ, Quirino BF, Bustamante MMC, Williamson L, Handelsman J, Krüger RH (2012) Characterization of soil bacterial assemblies in brazilian savanna-like vegetation reveals acidobacteria dominance. Microb Ecol. doi:10.1007/s00248-012-0057-3

  • Arjun JK, Kumarapillai H (2011) Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome. Biotechnol Bioinf Bioeng 1(3):361–367

    Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):1360–1385

    Google Scholar 

  • Brady SF (2007) Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2(5):1297–1305

    Article  CAS  Google Scholar 

  • Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, Coutinho TA (2009) Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 59:2339–2345

    Article  CAS  Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  Google Scholar 

  • Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58:531–539

    Article  Google Scholar 

  • Chryssanthi DG, Dedes PG, Karamanos NK, Cordopatis P, Lamari FN (2011) Crocetin inhibits invasiveness of MD-MB-231 breast cancer cells via downregulation of matrix mettaloproteinases. Planta Medica 77(2):146–151

  • Cohen SN, Chang ACY, Leslie HSU (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of escherichia coli by r-factor DNA. Proc Nat Acad Sci USA 69(8):2110–2114

    Article  CAS  Google Scholar 

  • Elena P, Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L, Bouchier C, Zhukova NV, Crawford RJ, Kiprianova EA (2009) Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 59:2476–2481

    Article  Google Scholar 

  • Esmaeili N, Ebrahimzadeh H, Abdi K, Safarian S (2011) Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study. Pharm Mag 7(25):74–80

    Article  CAS  Google Scholar 

  • Esmaeili N, Ebrahimzadeh H, Abdi K, Mirmasoumi M, Lamei N, Shamami MA (2013) Determination of metal content in Crocus sativus L. corms in dormancy and waking stages. Iran J Pharm Res 12(1):31–36

    CAS  Google Scholar 

  • Frankova L (2006) Colchicum autumnale L.: an ancient medicinal plant and its hysteranthousgeophytic life strategy. www.fyziologia.sav.sk/geophyte-colchicum

  • Garrido JFA, Lugo DM, Rodríguez CH, Cortes GT, Millán V, Toro N, Abarca FM, Ramírez-Saad HC (2012) Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie van Leeuwenhoek. doi:10.1007/s10482-012-9705-3

  • George IF, Hartmann M, Liles MR, Agathos SN (2011) Recovery of as-yet-uncultured soil Acidobacteriaon dilute solid media. Appl Environ Microbiol 77(22):8184–8188

    Article  CAS  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher Ed, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populusdeltoides Roots across contrasting soil types. Appl Environ Microbiol 77(17):5934–5944

  • Haining M, Hua Y, Tu C, Yuan L, Wei P (2012) Analysis of monosaccharides in the saffron corm glycoconjugate by capillary electrophoresis. Chin J Chromatogr 30(3):304–308

  • Hall TA (1999) Bioedit: a user friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Axid Symposium series No 41 95–98

  • Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27

    Article  CAS  Google Scholar 

  • Hamza MA (2008) Understanding soil analysis data. Resource Management Technical Report 327, Western Australian Agriculture Authority

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Boil Rev 68(4):669–685

    Article  CAS  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182–192

    Article  Google Scholar 

  • Hiltner L (1904) Überneuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologieunterbesonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hong S, Bunge J, Leslin C, Jeon S, Epstein SS (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3:1365–1373

    Article  CAS  Google Scholar 

  • Hultberg M, Bengtsson T, Liljeroth E (2010) Late blight on potato is suppressed by the biosurfactant-producing strain Pseudomonas koreensis 2.74 and its biosurfactant. Bio Control 55:543–550

    CAS  Google Scholar 

  • Inceoglu O, Al-Soud WA, Salles JF, Semenov AV, van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS One 6(8):e23321. doi:10.1371/journal.pone.0023321

    Article  CAS  Google Scholar 

  • Johansen A, Olsson S (2005) Using phospholipid fatty acid technique to study short-term effects of the biological control agent PseudomonasfluorescensDR54 on the microbial microbiota in barley rhizosphere. Microb Ecol 49:272–281

    Article  CAS  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1(6):1135–1143

    Google Scholar 

  • Kamalipour M, Akhondzadeh S (2011) Cardiovascular effects of saffron: an evidence-based review. J TehUniv Heart Ctr 6(2):59–61

    Google Scholar 

  • Kim BK, Chung J, Kim SY, Jeong H, Kang SG, Kwon SK, Lee CH, Song JY, Yu DS, Ryu CM, Kim JF (2012) Genome sequence of the leaf-colonizing Bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. J Bacteriol 194(14):3758–3759

    Article  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Method of studying soil microbial diversity. J Microbiol Method 58:169–188

    Article  CAS  Google Scholar 

  • Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC (2010) Isolation and characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils of cultivated vegetable crops. doi:10.1007/s11274-010-0616-z

  • Leveau JHJ (2007) The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:279–300

    Article  CAS  Google Scholar 

  • Luster J, Göttlein A, Nowack B, Sarret G (2009) Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box. Plant Soil 321:457–482

    Article  CAS  Google Scholar 

  • Ma A, Lv D, Zhuang X, Zhuang G (2013) Quorum quenching in culturablephyllosphere bacteria from tobacco. Int J Mol Sci 14:14607–14619

    Article  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza associated with field-grown cucumber (CucumissativusL.). Microb Ecol 34:210–223

    Article  Google Scholar 

  • Mazumdar T, Goswami C, Talukdar NC (2007) Characterization and screening of beneficial bacteria obtained on King’s B agar from tea rhizosphere. Indian J Biotechnol 6:490–494

    CAS  Google Scholar 

  • Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010) Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Curr Sci 98(4):538–542

    CAS  Google Scholar 

  • Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: saffron. Food Res Int 43:1981–1989

    Article  CAS  Google Scholar 

  • Mishra A, Chauhan PS, Chaudhry V, Tripathi M, Nautiyal CS (2011) Rhizosphere competent Pantoeaagglomerans enhances maize (Zea mays) and chickpea (Cicerarietinum L.) growth, without altering the rhizosphere functional diversity. Antonie van Leeuwenhoek 100:405–413

    Article  Google Scholar 

  • Nehvi FA, Yasmin S (2010) Saffron farming in India the Kashmir connection. Financ Agric 42(5):9–15

  • Okamoto H, Sat M, Miyat Y, Yoshikawa M, Isaka M (2000) Biocontrol of root rot of angelica trees by enterobacter cloacae and Serratiaficaria strains. J Gen Plant Pathol 66:86–94

    Article  Google Scholar 

  • Pang MF, Abdullah N, Lee CW, Ng C–C (2008) Isolation of high molecular weight dna from forest topsoilfor metagenomic analysis. Asia Pacific J Mol Biol Biotechnol 16(2):35–41

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110(16):6548–6553

    Article  CAS  Google Scholar 

  • Rahmani A, Seighali N, Ebrahimzadeh H, Zarei JH (2012) Partial purification of peroxidase in corms of Saffron (Crocus sativus L) during dormancy and waking. New Cell Mol Biotechnol J 2(8):95–99

    Article  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  Google Scholar 

  • Sachdeva D, Nemab P, Dhakephalkarb P, Zinjardec S, Chopadea B (2010) Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol Res 165:627–638

    Article  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant Growth Promoting rhizobacteria: a Critical Review. Life Sci Med Res 21:1–29

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sharaf-Eldin M, Elkholy S, Fernandez J, Junge H, Cheetham R, Guardiola J, Weathers P (2008) Bacillus subtillis FZB24 affects quantity and quality of saffron (Crocus sativus L.). Planta Medica 74:1316–1320

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantorec ML, Ciampi L, Cura´b JA (2009) Plant growth promoting properties of a strain of Enterobacterludwigii isolated from Loliumperenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Article  CAS  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Eco 36:147–155

    Article  Google Scholar 

  • Singh HP, Uma S, Selvarajan R, Karihaloo JL (2011) Micropropagation for production of quality banana planting material in Asia-Pacific. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB), New Delhi, India, p 92

  • Steinitz B, Cohen A, Goldberg Z, Kochba M (1991) Precocious gladiolus corm formation in liquid shake cultures. Plant Cell Tiss Org 26(2):63–70

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Eco 15:183–190

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. MolBiolEvol 28:2731–2739

    CAS  Google Scholar 

  • Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Article  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2:3

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  Google Scholar 

  • Tuimala J (2004) A primer to phylogenetic analysis using Phylip package, 2nd edn. Center for Scientific Computing, Espoo

    Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(4):37–43

    Article  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D (2004) Environmental genome shotgun sequencing of the sargasso sea. Science 304:66–74

    Article  CAS  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrobials 3(2):34–40

    Google Scholar 

  • Wani BA, Hamza AKH, Mohiddin FA (2011) Saffron: a repository of medicinal properties. J Med Plants Res 5(11):2131–2135

    Google Scholar 

  • Wechter P, Williamson J, Robertson A, Kluepfel D (2003) A rapid, cost-effective procedure for the extraction of microbial DNA from soil.World. J Microbiol Biotechnol 19:85–91

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Michel Aragno, Honorary professor University of Neuchatel, Switzerland for his scientific advice. SA is thankful to CSIR-UGC for Fellowship. We are also thankful to Mr Farooq Ahmad Joo and Mr C.L. Bhat (State Agriculture Department Government of J&K, India), for their help in sample collection and for sharing valuable inputs about Saffron cultivation in Kashmir valley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Vakhlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambardar, S., Sangwan, N., Manjula, A. et al. Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach. World J Microbiol Biotechnol 30, 2701–2709 (2014). https://doi.org/10.1007/s11274-014-1694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1694-0

Keywords

Navigation