Skip to main content

Advertisement

Log in

Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We review methods and models that help to assess how root activity changes soil properties and affects the fluxes of matter in the soil. Subsections discuss (1) experimental systems including plant treatments in artificial media, studying the interaction of model root and microbial exudates with soil constituents, and microcosms to distinguish between soil compartments differing in root influence, (2) the sampling and characterization of rhizosphere soil and solution, focusing on the separation of soil at different distances from roots and the spatially resolved sampling of soil solution, (3) cutting-edge methodologies to study chemical effects in soil, including the estimation of bioavailable element or ion contents (biosensors, diffusive gradients in thin-films), studying the ultrastructure of soil components, localizing elements and determining their chemical form (microscopy, diffractometry, spectroscopy), tracing the compartmentalization of substances in soils (isotope probing, autoradiography), and imaging gradients in-situ with micro electrodes or gels or filter papers containing dye indicators, (4) spectroscopic and geophysical methods to study the plants influence on the distribution of water in soils, and (5) the modeling of rhizosphere processes. Macroscopic models with a rudimentary depiction of rhizosphere processes are used to predict water or nutrient requirements by crops and forests, to estimate biogeochemical element cycles, to calculate soil water transport on a profile scale, or to simulate the development of root systems. Microscopic or explanatory models are based on mechanistic or empirical relations that describe processes on a single root or root system scale and/or chemical reactions in soil solution. We conclude that in general we have the tools at hand to assess individual processes on the microscale under rather artificial conditions. Microscopic, spectroscopic and tracer methods to look at processes in small “aliquots” of naturally structured soil seem to step out of their infancy and have become promising tools to better understand the complex interactions between plant roots, soil and microorganisms. On the field scale, while there are promising first results on using non-invasive geophysical methods to assess the plant’s influence on soil moisture, there are no such tools in the pipeline to assess the spatial heterogeneity of chemical properties and processes in the field. Here, macroscopic models have to be used, or model results on the microscopic level have to be scaled up to the whole plant or plot scale. Upscaling is recognized as a major challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114 doi:10.1007/s005720100108

    Article  Google Scholar 

  • Alewell C, Manderscheid B (1998) Use of objective criteria for the assessment of biogeochemical ecosystem models. Ecol Modell 107:213–224 doi:10.1016/S0304-3800(97)00218-4

    Article  CAS  Google Scholar 

  • AlHagrey SA (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58:839–854 doi:10.1093/jxb/erl237

    Article  CAS  Google Scholar 

  • Andersen CP, Scagel CF (1997) Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17:377–387

    PubMed  CAS  Google Scholar 

  • Annan AP (2005) GPR methods for hydrogeological studies. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 185–213

    Chapter  Google Scholar 

  • April R, Keller D (2005) Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9:1–18 doi:10.1007/BF00002714

    Article  Google Scholar 

  • Bächmann K, Steigerwald K (1993) The use of SEM for multielement analysis in small volumes and low concentration. Fresenius J Anal Chem 346:410–413 doi:10.1007/BF00325852

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Barré P, Velde B, Catel N, Abbadie L (2007) Soil–plant potassium transfer: impact of plant activity on clay minerals as seen from X-ray diffraction. Plant Soil 292:137–146 doi:10.1007/s11104-007-9208-6

    Article  CAS  Google Scholar 

  • Benderitter Y, Schott JJ (1999) Short time variation of the resistivity in an unsaturated soil: the relationship with rainfall. Eur J Environ Eng Geophys 4:37–49

    Google Scholar 

  • Benzerara K, Yoon T, Tyliszak T, Constantz A, Sportmann A, Brown G (2004) Scanning transmission X-ray microscopy study of microbial calcification. Geobiology 2:249–259 doi:10.1111/j.1472-4677.2004.00039.x

    Article  Google Scholar 

  • Bergström L, Stenström J (1998) Environmental fate of chemicals in soil. Ambio 27:16–23

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83 doi:10.1023/A:1026290508166

    Article  CAS  Google Scholar 

  • Blossfeld S, Gansert D (2007) A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ 30:176–186 doi:10.1111/j.1365-3040.2006.01616.x

    Article  PubMed  CAS  Google Scholar 

  • Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077 doi:10.1021/es049448g

    Article  PubMed  CAS  Google Scholar 

  • Bravin MN, Travassac F, Le Floch M, Hinsinger P, Garnier JM (2008) Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study. Plant Soil doi:10.1007/s11104-007-9532-x

  • Bruneau PMC, Ostle N, Davidson DA, Grieve IC, Fallick AE (2002) Determination of rhizosphere C-13 pulse signals in soil thin sections by laser ablation isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 16:2190–2194 doi:10.1002/rcm.740

    Article  PubMed  CAS  Google Scholar 

  • Cabala J, Teper L (2007) Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in Southern Poland. Water Air Soil Pollut 178:351–362 doi:10.1007/s11270-006-9203-1

    Article  CAS  Google Scholar 

  • Calba H, Firdaus, Cazevieille P, Thée C, Poss R, Jaillard B (2004) The dynamics of protons, aluminum, and calcium in the rhizosphere of maize cultivated in tropical acid soils: experimental study and modelling. Plant Soil 260:33–46

    Article  CAS  Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37:459–488 doi:10.1146/annurev.ecolsys.37.091305.110207

    Article  Google Scholar 

  • Chaignon V, Hinsinger P (2003) A biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual 32:824–833

    PubMed  CAS  Google Scholar 

  • Chudek JA, Hunter G (1997) Magnetic resonance imaging of plants. Prog Nucl Magn Reson Spectrosc 31:43–62 doi:10.1016/S0079-6565(97)00005-8

    Article  CAS  Google Scholar 

  • Corgié S, Joner E, Leyval C (2003) Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257:143–150 doi:10.1023/A:1026278424871

    Article  Google Scholar 

  • Cornu JY, Staunton S, Hinsinger P (2007) Copper concentration in plants and in the rhizosphere as influenced by the iron status of tomato (Lycopersicum esculentum L.). Plant Soil 292:63–77 doi:10.1007/s11104-007-9202-z

    Article  CAS  Google Scholar 

  • Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63 doi:10.1029/WR021i001p00051

    Article  CAS  Google Scholar 

  • Dane JH, Topp GC (2002) Methods of soil analysis. Part 4. Physical methods. SSSA Book Series 5, Soil Science Society of America, Madison Wisconsin, p 1692

    Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155/156:1–20 doi:10.1007/BF00024980

    Article  Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modeling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Eur J Soil Sci 57:13–25 doi:10.1111/j.1365-2389.2006.00786.x

    Article  Google Scholar 

  • DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865 doi:10.1128/AEM.71.12.7858-7865.2005

    Article  PubMed  CAS  Google Scholar 

  • Derrien D, Marol C, Balesdent J (2005) The dynamics of neutral sugars in the rhizosphere of wheat. An approach by 13C pulse-labelling and GC/C/IRMS. Plant Soil 267:243–253 doi:10.1007/s11104-005-5348-8

    Article  Google Scholar 

  • Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2006) Modified micro suction cup/ rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant Soil 286:99–107 doi:10.1007/s11104-006-9029-z

    Article  CAS  Google Scholar 

  • Dessureault-Rompré J, Nowack B, Schulin R, Tercier-Waeber M-L, Luster J (2008) Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environ Sci Technol doi:10.1021/es800167g

  • Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies [L.] Karst) trees. Plant Soil 222:149–161 doi:10.1023/A:1004755404412

    Article  CAS  Google Scholar 

  • Dieffenbach A, Göttlein A, Matzner E (1997) In-situ investigation of soil solution chemistry in an acid soil as influenced by growing roots of Norway spruce (Picea abies [L.] Karst.). Plant Soil 192:57–61 doi:10.1023/A:1004283508101

    Article  CAS  Google Scholar 

  • Diggle AJ (1988) Rootmap—a model in 3-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105:169–178 doi:10.1007/BF02376780

    Article  Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144:199–205 doi:10.1007/BF00012876

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hahn G, Römheld V, Wolf GA, Marschner H (1993) Non-destructive methods for demonstrating chemical changes in the rhizosphere I. Description of methods. Plant Soil 155:67–70 doi:10.1007/BF00024985

    Article  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pagès L (2006) Water uptake by plant roots: II—modeling of water transfer in the soil root-system with explicit account of flow within the root system—comparsion with experiments. Plant Soil 283:99–117 doi:10.1007/s11104-004-7904-z

    Article  CAS  Google Scholar 

  • Dunbabin VM, Diggle AJ, Rengel Z, VanHugten R (2002) Modelling the interactions between water and nutrient uptake and root growth. Plant Soil 239:19–38 doi:10.1023/A:1014939512104

    Article  CAS  Google Scholar 

  • Dunbabin VM, McDermott S, Bengough AG (2006) Upscaling from rhizosphere to whole root system: modelling the effects of phospholipid surfactants on water and nutrient uptake. Plant Soil 283:57–72 doi:10.1007/s11104-005-0866-y

    Article  CAS  Google Scholar 

  • Ekberg A, Buchmann N, Gleixner G (2007) Rhizospheric influence on soil respiration and decomposition in a temperate Norway spruce stand. Soil Biol Biochem 39:2103–2110 doi:10.1016/j.soilbio.2007.03.024

    Article  CAS  Google Scholar 

  • Engels C, Neumann G, Gahoonia T, George E, Schenk M (2000) Assessment of the ability of roots for nutrient acquisition. In: Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC (eds) Root methods. A handbook. Springer, Heidelberg, pp 403–459

    Google Scholar 

  • Fan TWM, Lane AN, Pedler J, Crowley D, Higashi RM (1997) Comprehensice analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography-mass spectrometry. Anal Biochem 251:57–68 doi:10.1006/abio.1997.2235

    Article  PubMed  CAS  Google Scholar 

  • Fischer WR, Flessa H, Schaller G (1989) pH values and redox potentials in microsites of the rhizosphere. Z Pflanzenernähr Bodenk 152:191–195 doi:10.1002/jpln.19891520209

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Wieshammer G, Istenic B (2003a) Microtome sectioning causes artefacts in rhizobox experiments. Plant Soil 256:455–462 doi:10.1023/A:1026173613947

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z et al (2003b) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014 doi:10.1021/es0300214

    Article  PubMed  CAS  Google Scholar 

  • Fitz WJ, Puschenreiter M, Wenzel WW (2006) Growth systems. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, pp 9–15

    Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381 doi:10.1128/AEM.71.1.371-381.2005

    Article  PubMed  CAS  Google Scholar 

  • Frommberger M, Schmitt-Kopplin P, Ping G, Frisch H, Schmid M, Zhang Y et al (2004) A simple and robust set-up for on-column sample preconcentration–nano-liquid chromatography–electrospray ionization mass spectrometry for the analysis of N-acylhomoserine lactones. Anal Bioanal Chem 378:1014–1020 doi:10.1007/s00216-003-2400-5

    Article  PubMed  CAS  Google Scholar 

  • Frossard E, Sinaj S (1997) The isotope exchange kinetic technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isotopes Environ Health Stud 33:61–77 doi:10.1080/10256019708036332

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49 doi:10.1016/j.mycres.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135:143–146 doi:10.1007/BF00014787

    Article  Google Scholar 

  • Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I—formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98 doi:10.1007/s11104-004-7903-0

    Article  CAS  Google Scholar 

  • Geelhoed JS, Van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390 doi:10.1046/j.1365-2389.1999.00251.x

    Article  CAS  Google Scholar 

  • Gerke J, Beissner L, Römer W (2000a) The quantitative effect of chemical phosphate mobilization by carboxylate anions in P uptake by a single root. I. The basic concept and determination of soil parameters. J Plant Nutr Soil Sci 163:207–212 doi:10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P

    Article  CAS  Google Scholar 

  • Gerke J, Römer W, Beissner L (2000b) The quantitative effect of chemical phosphate mobilization by carboxylate anions in P uptake by a single root. II. The importance of soil and plant parameters for uptake of mobilized P. J Plant Nutr Soil Sci 163:213–219 doi:10.1002/(SICI)1522-2624(200004)163:2<213::AID-JPLN213>3.0.CO;2-0

    Article  CAS  Google Scholar 

  • Glaser B (2005) Compound-specific stable isotope (∂13C) analysis in soil science. J Plant Nutr Soil Sci 168:633–648 doi:10.1002/jpln.200521794

    Article  CAS  Google Scholar 

  • Göttlein A (1998) Measurement of free Al3+in soil solutions by capillary electrophoresis. Eur J Soil Sci 49:107–112 doi:10.1046/j.1365-2389.1998.00133.x

    Article  Google Scholar 

  • Göttlein A (2006) Metal speciation in micro samples of soil solution by Capillary electrophoresis (CE) and ICP-OES with microinjection. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, p 251

    Google Scholar 

  • Göttlein A, Blasek R (1996) Analysis of small volumes of soil solution by capillary electrophoresis. Soil Sci 161:705–715 doi:10.1097/00010694-199610000-00007

    Article  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156 doi:10.1016/0016-7061(95)00059-3

    Article  Google Scholar 

  • Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49 doi:10.1023/A:1004332916188

    Article  Google Scholar 

  • Göttlein A, Heim A, Kuhn AJ, Schröder WH (2005) In-situ application of stable isotope tracers in the rhizosphere of an oak seedling. Eur J For Res 124:83–86 doi:10.1007/s10342-005-0060-z

    Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere, and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12 doi:10.1111/j.1365-2389.2005.00778.x

    Article  Google Scholar 

  • Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant Soil 211:1–9 doi:10.1023/A:1004547401951

    Article  CAS  Google Scholar 

  • Guivarch A, Hinsinger P, Staunton S (1999) Root uptake and distribution of radiocaesium from contaminated soils and the enhancement of Cs adsorption in the rhizosphere. Plant Soil 211:131–138 doi:10.1023/A:1004465302449

    Article  CAS  Google Scholar 

  • Hamza M, Aylmore LAG (1991) Liquid ion-exchanger microelectrodes used to study soil solute concentrations near plant-roots. Soil Sci Soc Am J 55:954–958

    CAS  Google Scholar 

  • Hamza M, Aylmore LAG (1992) Soil solute concentration and water uptake by single lupin and radish plant roots. I. Water extraction and solute accumulation. Plant Soil 145:187–196 doi:10.1007/BF00010347

    Article  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868 doi:10.1021/es0105459

    Article  PubMed  CAS  Google Scholar 

  • Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494 doi:10.1007/s00248-001-0025-9

    Article  PubMed  CAS  Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for non-destructive measurement of pH at the root–soil interface (Rhizosphere). J Plant Physiol 117:371–375

    Google Scholar 

  • Heim A, Brunner I, Frossard E, Luster J (2003) Aluminum Effects on Picea abies at low solution concentrations. Soil Sci Soc Am J 67:895–898

    CAS  Google Scholar 

  • Hendriks L, Claassen N, Jungk A (1981) Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. J Plant Nutr Soil Sci 144:486–499 doi:10.1002/jpln.19811440507

    Article  CAS  Google Scholar 

  • Herrmann K-H, Pohlmeier A, Gembris D, Vereecken H (2002) Three-dimensional imaging of pore water diffusion and motion in porous media by nuclear magnetic resonance imaging. J Hydrol (Amst) 267:244–257 doi:10.1016/S0022-1694(02)00154-3

    Article  CAS  Google Scholar 

  • Hinsinger P, Gilkes RJ (1997) Dissolution of phosphate rock in the rhizosphere of five plant species grown in an acid, P-fixing mineral substrate. Geoderma 75:231–249 doi:10.1016/S0016-7061(96)00094-8

    Article  Google Scholar 

  • Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. Eur J Soil Sci 44:535–545 doi:10.1111/j.1365-2389.1993.tb00475.x

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303 doi:10.1111/j.1469-8137.2005.01512.x

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Grayston SJ, Ord BG (1996) A novel method for characterization and quantification of plant root exudates. Plant Soil 184:97–104 doi:10.1007/BF00029278

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820 doi:10.1046/j.1365-3040.1999.00454.x

    Article  Google Scholar 

  • Hopmans JW, Bristow KL (2002) Current capabilities and future needs of root water and nutrient uptake modeling. Adv Agron 77:103–183 doi:10.1016/S0065-2113(02)77014-4

    Article  Google Scholar 

  • Hübel F, Beck E (1993) In-situ determination of the P-relations around the primary root of maize with respect to inorganic and phytate-P. Plant Soil 157:1–9

    Google Scholar 

  • Hui P, Tian CZ (1998) Fabrication of redox potential microelectrodes for studies in vegetated soils or biofilm systems. Environ Sci Technol 32:3646–3652 doi:10.1021/es980024u

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44 doi:10.1023/A:1004356007312

    Article  CAS  Google Scholar 

  • Jones DL, Brassington DS (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455 doi:10.1046/j.1365-2389.1998.4930447.x

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen G, Hees PW (2003) Organic acid behavior in soil-misconceptions and knowledge gaps. Plant Soil 248:31–41 doi:10.1023/A:1022304332313

    Article  CAS  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil–root system. Adv Agron 61:53–110 doi:10.1016/S0065-2113(08)60662-8

    Article  CAS  Google Scholar 

  • Keizer MG, van Riemsdijk WH (1995) ECOSAT, a computer program for the calculation of chemical speciation and transport in soil–water systems. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Kelleher BP, Simpson MJ, Simpson AJ (2006) Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim Cosmochim Acta 70:4080–4094 doi:10.1016/j.gca.2006.06.012

    Article  CAS  Google Scholar 

  • Killham K, Yeomans C (2001) Rhizosphere carbon flow measurement and implications: from isotopes to reporter genes. Plant Soil 232:91–96 doi:10.1023/A:1010386019912

    Article  CAS  Google Scholar 

  • Kirk GJD (1999) A model of phosphate solubilization by organic anion excretion from plant roots. Eur J Soil Sci 50:369–378 doi:10.1046/j.1365-2389.1999.00239.x

    Article  CAS  Google Scholar 

  • Kirk GJD (2002) Use of modeling to understand nutrient acquisition by plants. Plant Soil 247:123–130 doi:10.1023/A:1021115809702

    Article  CAS  Google Scholar 

  • Kodama H, Nelson S, Yang F, Kohyama N (1994) Mineralogy of rhizospheric and non-rhizospheric soils in corn fields. Clays Clay Miner 42:755–763 doi:10.1346/CCMN.1994.0420612

    Article  CAS  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46 doi:10.1016/S0065-2113(06)91001-3

    Article  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, pp 869–919

    Google Scholar 

  • Kuzyakov Y, Raskatov AV, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254:317–327 doi:10.1023/A:1025515708093

    Article  Google Scholar 

  • Lanson B, Marcus MA, Fakra S, Panfili F, Geoffroy N, Manceau A (2008) Formation of Zn-Ca phyllomanganate nanoparticles in grass roots. Geochim Cosmochim Acta 72:2478-2490 doi:10.1016/j.gca.2008.02.022

    Article  CAS  Google Scholar 

  • Lemon ER, Erickson AE (1952) The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Sci Soc Am J 16:160–163

    CAS  Google Scholar 

  • Leyval C, Berthelin H (1991) Weathering of mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016

    CAS  Google Scholar 

  • Li CS, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochem Cycles 8:237–254 doi:10.1029/94GB00767

    Article  CAS  Google Scholar 

  • Lindahl B, Finlay RD, Olsson S (2001) Simultaneous bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytol 150:189–194 doi:10.1046/j.1469-8137.2001.00074.x

    Article  Google Scholar 

  • Liu Q, Loganathan P, Hedley MJ, Skinner MF (2004) The mobilisation and fate of soil and rock phosphate in the rhizosphere of ectomycorrhizal Pinus radiata seedlings in an Allophanic soil. Plant Soil 264:219–229 doi:10.1023/B:PLSO.0000047758.77661.57

    Article  CAS  Google Scholar 

  • Lofthouse SD, Greenway GM, Stephen SC (1997) Microconcentric nebuliser for the analysis of small sample volumes by inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:1373–1376 doi:10.1039/a705047j

    Article  CAS  Google Scholar 

  • Luster J, Finlay R (eds) (2006) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf. 536 pp.; online at www.rhizo.at/handbook

  • Luster J, Menon M, Hermle S, Schulin R, Goerg-Günthardt MS, Nowack B (2008) Initial changes in refilled lysimeters built with metal polluted topsoil and acidic or calcareous subsoils as indicated by changes in drainage water composition. Water Air Soil Pollut Focus 8:163–176 doi:10.1007/s11267-007-9169-z

    Article  CAS  Google Scholar 

  • Lynch JP, Nielsen KL, Davis RD, Jablokow AG (1997) SimRoot: modelling and visualization of root systems. Plant Soil 188:139–151 doi:10.1023/A:1004276724310

    Article  CAS  Google Scholar 

  • Majdi H (1996) Root sampling methods—applications and limitations of minirhizotron technique. Plant Soil 185:225–258

    Google Scholar 

  • Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. In: Fenter P, Rivers M, Sturchio N, Sutton S (eds) applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington D.C, pp 341–428

    Google Scholar 

  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T et al (2008) Formation of metallic copper nanoparticles at the soil−root interface. Environ Sci Technol 42:1766–1772 doi:10.1021/es072017o

    Article  PubMed  CAS  Google Scholar 

  • Martell AE, Smith RM (1974–1989) Critical stability constants, vol. 1 to 6. Plenum, New York

    Google Scholar 

  • Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174–1194 doi:10.1029/2001WR000862

    Article  CAS  Google Scholar 

  • Meeussen JCL (2003) ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ Sci Technol 37:1175–1182 doi:10.1021/es025597s

    Article  PubMed  CAS  Google Scholar 

  • Menon M, Robinson B, Oswald SE, Kaestner A, Abbaspour KC, Lehmann E et al (2007) Visualisation of root growth in heterogeneously contaminated soil using neutron radiography. Eur J Soil Sci 58:802–810 doi:10.1111/j.1365-2389.2006.00870.x

    Article  Google Scholar 

  • Mermet JM, Todolí JL (2004) Towards total-consumption pneumatic liquid micro-sample-introduction systems in ICP spectrochemistry. Anal Bioanal Chem 378:57–59 doi:10.1007/s00216-003-2368-1

    Article  PubMed  CAS  Google Scholar 

  • Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour Res 39:1138 doi:10.1029/2002WR001581

    Article  Google Scholar 

  • Minchin PEH, McNaughton GS (1984) Exudation of recently fixed carbon by non-sterile roots. J Exp Bot 35:74–82 doi:10.1093/jxb/35.1.74

    Article  CAS  Google Scholar 

  • Mooney SJ, Morris C, Berry PM (2006a) Visualization and quantification of the effects of cereal root lodging on three-dimensional soil macrostructure using X-ray computed tomography. Soil Sci 171:706–718 doi:10.1097/01.ss.0000228041.03142.d3

    Article  CAS  Google Scholar 

  • Mooney SJ, Foot K, Hutchings TR, Moffat AJ (2006b) Micromorphological investigations into root penetration in a landfill mineral cap, Hertfordshire, UK. Waste Manag 27:1225–1232 doi:10.1016/j.wasman.2006.07.012

    Article  PubMed  Google Scholar 

  • Moran CJ, Pierret A, Stevenson AW (2000) X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure. Plant Soil 223:99–115 doi:10.1023/A:1004835813094

    Article  CAS  Google Scholar 

  • Myneni SCB (2002) Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. In: Fenter P, Rivers M, Sturchio N, Sutton S (eds) Reviews in Mineralogy and geochemistry. Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Mineralogical Society of America, pp 485–579

  • Nachtegaal M, Marcus MA, Sonke JE, Vangronsveld J, Livi KJT, Van der Lelie D et al (2005) Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochim Cosmochim Acta 69:4649 doi:10.1016/j.gca.2005.05.019

    Article  CAS  Google Scholar 

  • Naim MS (1965) Development of rhizosphere and rhizoplane microflora of Artistida coerulescens in the Lybian desert. Arch Mikrobiol 50:321–325 doi:10.1007/BF00509573

    Article  Google Scholar 

  • Neumann G (2006) Root exudates and organic composition of plant roots. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, pp 52–61

    Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 41–93

    Google Scholar 

  • Nollet LML (ed) (2007) Handbook of water analysis, 2nd Ed. CRC Press, Boca Raton. 769 pp

  • Nowack B, Köhler S, Schulin R (2004) Use of diffusive gradients in thin films (DGT) in undisturbed field soils. Environ Sci Technol 38:1133–1138 doi:10.1021/es034867j

    Article  PubMed  CAS  Google Scholar 

  • Nowack B, Mayer KU, Oswald SE, VanBeinum W, Appelo CAJ, Jacques D et al (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321 doi:10.1007/s11104-006-9017-3

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil–root system. Blackwell, Oxford, p 342

    Google Scholar 

  • Ochs M, Brunner I, Stumm W, Cosovic B (1993) Effects of root exudates and humic substances on weathering kinetics. Water Air Soil Pollut 68:213–229 doi:10.1007/BF00479404

    Article  CAS  Google Scholar 

  • Oswald SE, Menon M, Carminati A, Vontobel P, Lehmann E, Schulin R (2008) Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone J 7:1035–1047 doi:10.2136/vzj2007.0156

    Article  Google Scholar 

  • Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, LeBot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119 doi:10.1023/B:PLSO.0000016540.47134.03

    Article  Google Scholar 

  • Panfili F, Manceau A, Sarret G, Spadini L, Kirpichtchikova T, Bert V et al (2005) The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy and principal components analysis. Geochim Cosmochim Acta 69:2265–2284 doi:10.1016/j.gca.2004.10.017

    Article  CAS  Google Scholar 

  • Panikov NS, Mastepanov MA, Christensen TR (2007) Membrane probe array: technique development and observation of CO2 and CH4 diurnal oscillations in peat profile. Soil Biol Biochem 39:1712–1723 doi:10.1016/j.soilbio.2007.01.034

    Article  CAS  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, p 993

    Google Scholar 

  • Parker DR, Pedler JF (1997) Reevaluating the free-ion activity model of trace metal availability to higher plants. Plant Soil 196:223–228 doi:10.1023/A:1004249923989

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water resources investigations Report 99-4259. US Geological Survey. 312 pp

  • Paterson E, Sim A, Standing D, Dorward M, McDonald AJS (2006) Root exudation from Hordeum vulgare in response to localized nitrate supply. J Exp Bot 57:2413–2420 doi:10.1093/jxb/erj214

    Article  PubMed  CAS  Google Scholar 

  • Pierret A, Doussan C, Garrigues E, McKirby J (2003) Observing plant roots in their environment: current imaging options and specific contribution of two-dimensional approaches. Agronomie 23:471–479 doi:10.1051/agro:2003019

    Article  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281 doi:10.2136/vzj2006.0067

    Article  Google Scholar 

  • Pinjuv G, Mason EG, Watt M (2006) Quantitative validation and comparison of a range of forest growth model types. For Ecol Manage 236:37–46 doi:10.1016/j.foreco.2006.06.025

    Article  Google Scholar 

  • Plassard C, Meslem M, Souche G, Jaillard B (1999) Localization and quantification of net fluxes of H+along maize roots by combined use of pH-indicator dye videodensitometry and H+-selective microelectrodes. Plant Soil 211:29–39 doi:10.1023/A:1004560208777

    Article  CAS  Google Scholar 

  • Plassard C, Guérin-Laguette A, Véry AA, Casarin V, Thibaud JB (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Plant Cell Environ 25:75–84 doi:10.1046/j.0016-8025.2001.00810.x

    Article  Google Scholar 

  • Polomski J, Kuhn N (2002) Root research methods. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots—the hidden half, 3rd edn. Marcel Dekker, New York, pp 295–321

    Google Scholar 

  • Prabhu RK, Vijayalahshimi S, Mahalingam TR, Viswanathan KS, Methews CK (1993) Laser vaporization inductively-coupled plasma-mass spectrometry—a technique for the analysis of small volumes of solutions. J Anal At Spectrom 8:565–569 doi:10.1039/ja9930800565

    Article  CAS  Google Scholar 

  • Psenner R, Boström B, Dinka M, Pettersson K, Pucsko R, Sager M (1988) Fractionation of phosphorus in suspended matter and sediment. Arch Hydrobiol Beih 30:99–103

    Google Scholar 

  • Puschenreiter M, Wenzel WW, Wieshammer G, Fitz WJ, Wieczorek S, Kanitsar K et al (2005a) Novel micro-suction-cup design for sampling soil solution at defined distances from roots. J Plant Nutr Soil Sci 168:386–391 doi:10.1002/jpln.200421681

    Article  CAS  Google Scholar 

  • Puschenreiter M, Schnepf A, Millan IM, Fitz WJ, Horak O, Klepp J et al (2005b) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271:205–218 doi:10.1007/s11104-004-2387-5

    Article  CAS  Google Scholar 

  • Raab TK, Vogel JP (2004) Ecological and agricultural applications of synchrotron IR microscopy. Infrared Phys.Technol. 45:393–402 doi:10.1016/j.infrared.2004.01.008

    Article  CAS  Google Scholar 

  • Raich JW, Mora G (2005) Estimating root plus rhizosphere contributions to soil respiration in annual croplands. Soil Sci Soc Am J 69:634–639 doi:10.2136/sssaj2004.0257

    Article  CAS  Google Scholar 

  • Rais D, Nowack B, Schulin R, Luster J (2006) Sorption of trace metals by different standard and micro suction cups used as soil water samplers as influenced by dissolved organic carbon. J Environ Qual 35:50–60 doi:10.2134/jeq2005.0040

    Article  PubMed  CAS  Google Scholar 

  • Rangel Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM et al (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828–838 doi:10.1111/j.1462-2920.2005.00756.x

    Article  PubMed  CAS  Google Scholar 

  • Rappoldt C (1995) Measuring the millimeter scale oxygen diffusivity in soil using microelectrodes. Eur J Soil Sci 46:169–177 doi:10.1111/j.1365-2389.1995.tb01824.x

    Article  Google Scholar 

  • Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276:115–132 doi:10.1007/s11104-005-3504-9

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda M, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041 doi:10.1007/s00216-006-0574-3

    Article  PubMed  CAS  Google Scholar 

  • Römheld V (1986) pH changes in the rhizosphere of various crop plants in relation to the supply of plant nutrients. In: Potash Review 12, Internat. Potash Institute, Bern Switzerland, Subject 6, 55th Suite

  • Roose T, Fowler AC (2004a) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184 doi:10.1016/j.jtbi.2003.12.013

    Article  PubMed  CAS  Google Scholar 

  • Roose T, Fowler AC (2004b) A model for water uptake by plant roots. J Theor Biol 228:155–171 doi:10.1016/j.jtbi.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  • Roose T, Fowler AC, Darrah PR (2001) A mathematical model of plant nutrient uptake. J Math Biol 42:347–360 doi:10.1007/s002850000075

    Article  PubMed  CAS  Google Scholar 

  • Rosling A, Lindahl B, Finlay RD (2004) Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802 doi:10.1111/j.1469-8137.2004.01080.x

    Article  Google Scholar 

  • Rothfuss F, Conrad R (1994) Development of a gas diffusion probe for the determination of methane concentrations and diffusion characteristics in flooded paddy soil. FEMS Microbiol Ecol 14:307–318 doi:10.1111/j.1574-6941.1994.tb00116.x

    Article  CAS  Google Scholar 

  • Sandnes A, Eldhuset TD (2003) Soda glass beads as growth medium in plant cultivation experiments. J Plant Nutr Soil Sci 166:660–661 doi:10.1002/jpln.200320308

    Article  CAS  Google Scholar 

  • Sawhney BL (1996) Extraction of organic chemicals. In: Sparks DL (ed) Methods of soil analysis. Part 3. chemical methods. Soil Science Society of America, Madison, pp 1071–1084

    Google Scholar 

  • Schnepf A, Schrefl T, Wenzel WW (2002) The suitability of pde-solvers in rhizosphere modeling, exemplified by three mechanistic rhizosphere models. J Plant Nutr Soil Sci 165:713–718 doi:10.1002/jpln.200290008

    Article  CAS  Google Scholar 

  • Schumacher M, Christl I, Scheinost AC, Jacobsen C, Kretzschmar R (2005) Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environ Sci Technol 39:9094–9100 doi:10.1021/es050099f

    Article  PubMed  CAS  Google Scholar 

  • Senesi N (1996) Electron spin (or paramagnetic) resonance spectroscopy. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, Madison, pp 323–356

    Google Scholar 

  • Seuntjens P, Nowack B, Schulin R (2004) Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265:61–73 doi:10.1007/s11104-005-8470-8

    Article  CAS  Google Scholar 

  • Shen J, Hoffland E (2007) In situ sampling of small volumes of soil solution using modified micro-cups. Plant Soil 292:161–169 doi:10.1007/s11104-007-9212-x

    Article  CAS  Google Scholar 

  • Siegel LS, Alshawabkeh AN, Palmer CD, Hamilton MA (2003) Modeling cesium partitioning in the rhizosphere: a focus on the role of root exudates. Soil Sediment Contam 12:47–68 doi:10.1080/713610960

    Article  CAS  Google Scholar 

  • Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293 doi:10.1023/A:1004378602378

    Article  CAS  Google Scholar 

  • Sparks DL (ed) (1996) Methods of soil analysis. Part 3. Chemical Methods. SSSA Book Series 5, Soil Science Society of America, Madison. 1358 pp

  • Stevenson FJ (1996) Nitrogen-organic forms. In: Sparks DL (ed) Methods of soil analysis., Part 3. Chemical methods. Soil Science Society of America, Madison, pp 1185–1200

    Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710 doi:10.1016/S0038-0717(01)00235-8

    Article  Google Scholar 

  • Sulzmann EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256 doi:10.1007/s10533-004-7314-6

    Article  Google Scholar 

  • Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root-system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    Article  PubMed  CAS  Google Scholar 

  • Tercier-Waeber M-L, Buffle J, Koudelka-Hep M, Graziottin F (2002) Submersible voltammetric probes for in-situ real-time trace element monitoring in natural aquatic systems. In: Taillefert M, Rozan TF (eds) Environmental electrochemistry: analysis of trace element biogeochemistry. ACS Series No. 811, Washington D.C, pp 16–39

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851 doi:10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Turpault MP (2006) Sampling of rhizosphere soil for physico-chemical and mineralogical analyses by physical separation based on drying and shaking. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, pp 196–197

    Google Scholar 

  • VanBochove E, Beauchemin S, Theriault G (2002) Continuous multiple measurement of soil redox potential using platinum microelectrodes. Soil Sci Soc Am J 66:1813–1820

    Article  CAS  Google Scholar 

  • Vereecken H, Kasteel R, Vanderborght J, Harter T (2007) Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: a review. Vadose Zone J 6:1–28 doi:10.2136/vzj2006.0055

    Article  Google Scholar 

  • Vetterlein D, Jahn R (2004) Combination of micro suction cups and time-domain reflectometry to measure osmotic potential gradients between bulk soil and rhizosphere at high resolution in time and space. Eur J Soil Sci 55:497–504 doi:10.1111/j.1365-2389.2004.00612.x

    Article  Google Scholar 

  • Vink JPM, Meeussen JCL (2007) BIOCHEM-ORCHESTRA: a tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ Pollut 148:833–841 doi:10.1016/j.envpol.2007.01.041

    Article  PubMed  CAS  Google Scholar 

  • Voegelin A, Weber F-A, Kretzschmar R (2007) Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochim Cosmochim Acta 71:5804–5820 doi:10.1016/j.gca.2007.05.030

    Article  CAS  Google Scholar 

  • VonLützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E et al (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207 doi:10.1016/j.soilbio.2007.03.007

    Article  CAS  Google Scholar 

  • Wang E, Smith CJ (2004) Modeling the growth and water uptake function of plant root systems: a review. Aust J Agric Res 55:501–523 doi:10.1071/AR03201

    Article  Google Scholar 

  • Wang Z, Göttlein A, Bartonek G (2001) Effects of growing roots of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) on rhizosphere soil solution chemistry. J Plant Nutr Soil Sci 164:35–41 doi:10.1002/1522-2624(200102)164:1<35::AID-JPLN35>3.0.CO;2-M

    Article  CAS  Google Scholar 

  • Warnken K, Zhang H, Davison W (2004) Analysis of polyacrylamide gels for trace metals using diffusive gradients in thin films and laser ablation inductively coupled plasma mass spectrometry. Anal Chem 76:6077–6084 doi:10.1021/ac0400358

    Article  PubMed  CAS  Google Scholar 

  • Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396 doi:10.1046/j.1365-2389.2001.00391.x

    Article  CAS  Google Scholar 

  • Weaver RW, Angle S, Bottomley P (eds) (1994) Methods of soil analysis. Part 2. Microbiological and biochemical properties. SSSA Book Series 5, Soil Science Society of America, Madison. 1121 pp

  • Wenzel WW, Wieshammer G, Fitz WJ, Puschenreiter M (2001) Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant Soil 237:37–45 doi:10.1023/A:1013395122730

    Article  CAS  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210 doi:10.1046/j.1469-8137.2000.00570.x

    Article  CAS  Google Scholar 

  • Wolf DC, Skipper HD (1994) Soil sterilization. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis, Part 2; microbiological and biochemical properties. Soil Science Society of America, Madison, pp 41–51

    Google Scholar 

  • Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA (2007) SPACSYS: integration of a 3D root architecture component to carbon, nitrogen and water cycling-model description. Ecol Modell 200:343–359 doi:10.1016/j.ecolmodel.2006.08.010

    Article  Google Scholar 

  • Yanai RD, Majdi H, Park BB (2003) Measured and modelled differences in nutrient concentrations between rhizosphere and bulk soil in a Norway spruce stand. Plant Soil 257:133–142 doi:10.1023/A:1026257508033

    Article  CAS  Google Scholar 

  • Yevdokimov IV, Ruser R, Buegger F, Marx M, Munch JC (2007) Carbon turnover in the rhizosphere under continuous plant labeling with (CO2)-C-13: partitioning of root, microbial, and rhizomicrobial respiration. Eurasian Soil Sci 40:969–977 doi:10.1134/S1064229307090074

    Article  Google Scholar 

  • Yu KW, DeLaune RD (2006) A modified soil diffusion chamber for gas profile analysis. Soil Sci Soc Am J 70:1237–1241 doi:10.2136/sssaj2005.0332N

    Article  CAS  Google Scholar 

  • Zeien H, Brümmer GW (1989) Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilgn Dtsch Bodenkundl Ges 59:505–510

    Google Scholar 

  • Zhang TC, Pang H (1999) Applications of microelectrode techniques to measure pH and oxidation–reduction potential in rhizosphere soil. Environ Sci Technol 33:1293–1299 doi:10.1021/es981070x

    Article  CAS  Google Scholar 

  • Zhang H, Davison W, Knight B, McGrath S (1998) In situ measurement of solution concentrations and fluxes of trace metals in soils using DGT. Environ Sci Technol 32:704–710 doi:10.1021/es9704388

    Article  CAS  Google Scholar 

  • Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607 doi:10.1021/es000268q

    Article  PubMed  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Nowack B (2007) The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol 41:2770–2775 doi:10.1021/es062032d

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Luster.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luster, J., Göttlein, A., Nowack, B. et al. Sampling, defining, characterising and modeling the rhizosphere—the soil science tool box. Plant Soil 321, 457–482 (2009). https://doi.org/10.1007/s11104-008-9781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9781-3

Keywords

Navigation