Skip to main content

Advertisement

Log in

Extracellular enzymes produced by microorganisms isolated from maritime Antarctica

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aghajari N, Feller G, Gerday C, Haser R (1996) Crystallization and preliminary X-ray diffraction studies of α-amylase from the Antarctic psychrophile Alteromonas halplanctis A23. Protein Sci 5(10):2128–2129. doi:10.1002/pro.5560051021

    Article  CAS  Google Scholar 

  • Alippi AM, Aguilar OM (1998) Characterization of isolates of Paenibacillus larvae subsp. larvae from diverse geographical origin by the polymerase chain reaction and Box primers. J Invertebr Pathol 72:21–27. doi:10.1006/jipa.1998.4748

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    CAS  Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    CAS  Google Scholar 

  • Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol Biotechnol 17:432–437. doi:10.1007/BF01574774

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208. doi:10.1038/nrmicro773

    Article  CAS  Google Scholar 

  • Fogliano V, Andreoli C, Martello A, Caiazzo M, Lobosco O, Formisano F, Carlino PA, Meca G, Graziani G, Di Martino Rigano V, Vona V, Carfagna S, Rigano C (2010) Functional ingredients produced by culture of Koliella antarctica. Aquaculture 299:115–120. doi:10.1016/j.aquaculture.2009.11.008

    Article  CAS  Google Scholar 

  • Gonzales JA, Gallardo CS, Combar A, Rego P, Rodríguez LA (2004) Determination of enzymatic activity in ecotypic Saccharomyces and non-Saccharomyces. Electron J Environ Agric Food Chem 3(5):743–750

    Google Scholar 

  • Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768. doi:10.1007/s00792-009-0264-0

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  Google Scholar 

  • León J, Liza L, Soto I, Cuadra DL, Patiño L, Zerpa R (2007) Bioactive Actinomycetes of marine sediment from the central coast of Peru. Rev Peruana Biol 14(2):259–270

    Google Scholar 

  • Li J, Chi Z, Wang X, Peng Y, Chi Z (2009) The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production. Chin J Oceanol Limnol 27(4):753–761. doi:10.1007/s00343-009-9198-8

    Article  Google Scholar 

  • Lo Giudice A, Casella P, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2010) Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol 33:929–943. doi:10.1007/s00300-010-0770-7

    Article  Google Scholar 

  • Lupo S, Bettucci L, Pérez A, Martínez S, Césari C, Escoriaza G, Gatica M (2006) Characterization and identification of the basidiomycetous fungus associated with “hoja de malvón” grapevine disease in Argentina. Phytopatholog Mediterr 45:S110–S116

    Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. doi:10.1016/j.resmic.2010.12.004

    Article  Google Scholar 

  • Margesin R, Feller G, Gerday C, Russell NJ (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) Encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885

    Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459. doi:10.1111/j.1472765X.2005.01704.x

    Article  CAS  Google Scholar 

  • Mikán Venegas JF, Castellanos Suárez DE (2004) Screening for isolation and characterization of microorganisms and enzymes with useful potential for degradation of cellulose and hemicellulose. Rev Colomb Biotecnol VI(1):58–71

    Google Scholar 

  • Mtui G, Nakamura Y (2004) Lignin-degrading enzymes from mycelial cultures of Basiodiomycete fungi isolated in Tanzania. J Chem Eng Jpn 37(1):113–118. doi:10.1252/jcej.37.113

    Article  CAS  Google Scholar 

  • Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzym Microb Tech 17:770–778. doi:10.1016/0141-0229(94)00003-A

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol C, Soccol V, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Bioc 31:135–152. doi:10.1042/BA19990073

    Article  CAS  Google Scholar 

  • Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. IMI technical handbook 1, CAB Int

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from Puddles in the vicinity of Midre Love′nbreen Glacier, Arctic and Bioprospecting for enzymes and fatty Acids. Curr Microbiol 60:307–314. doi:10.1007/s00284-009-9543-3

    Article  CAS  Google Scholar 

  • Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E (2007) Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 44:181–187. doi:10.1111/j.1472-765X.2006.02050.x

    Article  CAS  Google Scholar 

  • Rodríguez K, Echer Ferreira MK, Salamoni Pinto S, Cofre Barragana V, Van Der Sand S (2007) Perfil da atividade enzimática de actinomicetos isolados de proceso de compostagem. Sinaferm XVI, BAM 0626

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biot 6:127–141. doi:10.1007/s11157-006-9107-y

    Article  Google Scholar 

  • Seeley HW Jr, Vandemark PJ, Lee JJ (1991) Microbes in action, 4th edn. Freeman WH and Company, New York

    Google Scholar 

  • Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83. doi:10.1007/s00300-009-0686-2

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  • Tosi S, Kostadinova N, Krumova E, Pashova S, Dishliiska V, Spassova B, Vassilev S, Angelova M (2010) Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biol 33:1227–1237. doi:10.1007/s00300-010-0812-1

    Article  Google Scholar 

  • Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418. doi:10.3109/10409238909082556

    Article  CAS  Google Scholar 

  • Villalba LS, Mikan JF, Sánchez J (2004) Actividades hidrolíticas y caracterización enzimática de poblaciones microbianas aisladas del patrimonio documental del Archivo General de Colombia. Nova 2(2):49–58

    Google Scholar 

  • Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ (2007) Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett Appl Microbiol 44:1–6. doi:10.1111/j.1472-765X.2006.02039.x

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wickström MB (1983) Detection of microbial proteolytic activity by a cultivation plate assay in which different proteins adsorbed to a hydrophobic surface are used as substrates. Appl Environ Microb 45(2):393–400

    Google Scholar 

  • Zhang J, Zeng R (2011) Molecular cloning and expression of an extracellular a-amylase gene from an Antarctic deep sea psychrotolerant Pseudomonas stutzeri strain 7193. World J Microb Biot 27:841–850. doi:10.1007/s11274-010-0526-0

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Paul R. Gill for English corrections and valuable comments. This study was supported by a grant from the Comisión Sectorial de Investigación Científica—Universidad de la República and by Instituto Antártico Uruguayo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyliam Loperena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loperena, L., Soria, V., Varela, H. et al. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28, 2249–2256 (2012). https://doi.org/10.1007/s11274-012-1032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1032-3

Keywords

Navigation