Skip to main content
Log in

Optimized Hydrothermal Synthesis of Chitosan-Epichlorohydrin/Nanosilica for Efficient Reactive Dye Removal: Mechanistic Insights

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, a cross-linked chitosan-epichlorohydrin/nanosilica (CS-EPH/NSi) bionanocomposite was prepared using a simple two-step process. First, functionalization of chitosan with nanosilica followed by crosslinking process with epichlorohydrin. The CS-EPH/NSi bionanocomposite’s adsorption property toward the removal of reactive orange 16 (RO16) dye was evaluated. The adsorption process of RO16 by CS-EPH/NSi was optimized using Box-Behnken design (BBD). The desirability function results revealed that the highest removal of RO16 (96.32%) is achieved at the following experimental conditions: solution pH of 4.26, dosage of CS-EPH/NSi = 0.089 g/100 mL, and contact time of 9.69 min. The Langmuir isotherm model was found to describe the equilibrium behavior of the monolayer adsorption process at 25 °C. The kinetics data of RO16 adsorption by CS-EPH/NSi were appropriately described by a pseudo-second order model, which suggests that the adsorption process occurs via chemisorption. The high adsorption capacity of CS-EPH/NSi for RO16 (110.2 mg/g) can be attributed to the electrostatic forces between the positively charged CS-EPH/NSi and the negatively charged RO16 anions, as well as n-π and H-bond interactions. Overall, this study demonstrates the potential of CS-EPH/NSi as an adsorbent for the efficient removal of textile RO16 dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data will be available on request from the authors.

References

  • Abdulhameed, A. S., Jawad, A. H., Ridwan, M., Khadiran, T., WilsonL, D., & Yaseen, Z. M. (2022a). Chitosan/carbon-doped TiO2 composite for adsorption of two anionic dyes in solution and gaseous SO2 capture: Experimental modeling and optimization. Journal of Polymers and the Environment, 30(11), 4619–4636. https://doi.org/10.1007/s10924-022-02532-z

    Article  CAS  Google Scholar 

  • Abdulhameed, A. S., Jawad, A. H., Vigneshwaran, S., & ALOthman ZA, Yaseen ZM. (2022b). Different TiO2 phases (degussa/anatase) modified cross-linked chitosan composite for the removal of reactive red 4 dye: Box-Behnken design. Journal of Polymers and the Environment, 30(12), 5084–5099. https://doi.org/10.1007/s10924-022-02568-1

    Article  CAS  Google Scholar 

  • Adachi, A., Ouadrhiri, F. E., Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M. H., & Lahkimi, A. (2022). Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro fenton process: Application of optimization. Catalysts, 12(6), 665. https://doi.org/10.3390/catal12060665

    Article  CAS  Google Scholar 

  • Agha, H. M., Abdulhameed, A. S., Jawad, A. H., Sidik, N. R., Aazmi, S., Wilson, L. D., & ALOthman, Z. A. (2023). Food-grade algae modified Schiff base-chitosan benzaldehyde composite for cationic methyl violet 2B dye removal: RSM statistical parametric optimization. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2023.2246596

    Article  PubMed  Google Scholar 

  • Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160.

    Article  PubMed  CAS  Google Scholar 

  • Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 185, 832–848.

    Article  PubMed  CAS  Google Scholar 

  • Bagheban, M., Baghdadi, M., Mohammadi, A., & Roozbehnia, P. (2019). Investigation of the effective factors on the mutagen X formation in drinking water by response surface methodology. Journal of Environmental Management, 251, 109515.

    Article  PubMed  CAS  Google Scholar 

  • Barasarathi, J., Abdullah, P. S., & Uche, E. C. (2022). Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. Chemosphere, 305, 135384.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt, P., Joshi, S., Bayram, G. M. U., Khati, P., & Simsek, H. (2023). Developments and application of chitosan-based adsorbents for wastewater treatments. Environmental Research, 226, 115530.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Bilal, M., Ikram, M., Shujah, T., Haider, A., Naz, S., Ul-Hamid, A., & Nabgan, W. (2022). Chitosan-grafted polyacrylic acid-doped copper oxide nanoflakes used as a potential dye degrader and antibacterial agent: In silico molecular docking analysis. ACS Omega, 7(45), 41614–41626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ecer, Ü., Zengin, A., & Şahan, T. (2021). Magnetic clay\zeolitic imidazole framework nanocomposite (ZIF-8@ Fe3O4@ BNT) for reactive orange 16 removal from liquid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127558.

    Article  CAS  Google Scholar 

  • El Kurdi, R., Chebl, M., Sillanpää, M., El-Rassy, H., & Patra, D. (2021). Chitosan oligosaccharide/silica nanoparticles hybrid porous gel for mercury adsorption and detection. Materials Today Communications, 28, 102707.

    Article  Google Scholar 

  • El-Barghouthi, M., Eftaiha, A. A., Rashid, I., Al-Remawi, M., & Badwan, A. (2008). A novel super disintegrating agent made from physically modified chitosan with silicon dioxide. Drug Development and Industrial Pharmacy, 34(4), 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Eltaweil, A. S., Abd El-Monaem, E. M., El-Subruiti, G. M., Ali, B. M., Abd El-Latif, M. M., & Omer, A. M. (2023). Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies. Journal of Porous Materials, 30(2), 607–618.

    Article  CAS  Google Scholar 

  • Fard, B. H., Khojasteh, R. R., & Gharbani, P. (2018). Preparation and characterization of visible-light sensitive nano Ag/Ag3VO4/AgVO3 modified by graphene oxide for photodegradation of reactive orange 16 dye. Journal of Inorganic and Organometallic Polymers and Materials, 28, 1149–1157.

    Article  CAS  Google Scholar 

  • Fathi, E., & Gharbani, P. (2021). Modeling and optimization removal of reactive orange 16 dye using MgO/g-C3N4/zeolite nanocomposite in coupling with LED and ultrasound by response surface methodology. Diamond and Related Materials, 115, 108346.

    Article  ADS  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57(385471), 1100–1107.

    Google Scholar 

  • Gharbani, P. (2017). Synthesis of polyaniline-tin (II) molybdophosphate nanocomposite and application of it in the removal of dyes from aqueous solutions. Journal of Molecular Liquids, 242, 229–234.

    Article  CAS  Google Scholar 

  • Gharbani, P. (2018). Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnOX-CeO2 using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 548, 191–197.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115–124.

    Article  CAS  Google Scholar 

  • Huang, C., Ma, Q., Zhou, M., Wang, J., & Feng, Z. (2023). Adsorption effect of oxalic acid-chitosan-bentonite composite on Cr6+ in aqueous solution. Water, Air, and Soil Pollution, 234, 540.

    Article  ADS  CAS  Google Scholar 

  • Ihaddaden, S., Aberkane, D., Boukerroui, A., & Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 102952.

    Article  Google Scholar 

  • Jani, N. A., Haddad, L., Abdulhameed, A. S., Jawad, A. H., ALOthman, Z. A., & Yaseen, Z. M. (2022). Modeling and optimization of the adsorptive removal of crystal violet dye by durian (Durio zibethinus) seeds powder: Insight into kinetic, isotherm, thermodynamic, and adsorption mechanism. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03319-x

    Article  Google Scholar 

  • Javanbakht, V., & Rafiee, Z. (2022). Fibrous polyester sponge modified with carboxymethyl cellulose and zeolitic imidazolate frameworks for methylene blue dye removal in batch and continuous adsorption processes. Journal of Molecular Structure, 1249, 131552.

    Article  CAS  Google Scholar 

  • Jawad, A. H., Malek, N. N. A., Abdulhameed, A. S., & Razuan, R. (2020). Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: Optimization by Box-Behnken design. Journal of Polymers and the Environment, 28, 1068–1082.

    Article  CAS  Google Scholar 

  • Jawad, A. H., Hameed, B. H., & Abdulhameed, A. S. (2023). Synthesis of biohybrid magnetic chitosan-polyvinyl alcohol/MgO nanocomposite blend for remazol brilliant blue R dye adsorption: Solo and collective parametric optimization. Polymer Bulletin, 80(5), 4927–4947.

    Article  CAS  Google Scholar 

  • Kanrar, S., Ghosh, A., Ghosh, A., Sadhukhan, M., Bhowmik, T., Ghosh, U. C., & Sasikumar, P. (2022). Facile synthesis and characterization of chromium (III)/zirconium(IV) impregnated chitosan/β-cyclodextrin bio-composite and application towards efficient removal of copper(II) from aqueous systems. Inorganic Chemistry Communications, 145, 109988.

    Article  CAS  Google Scholar 

  • Kazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Chitosan-sodium alginate multilayer membrane developed by Fe0@ WO3 nanoparticles: Photocatalytic removal of hexavalent chromium. Carbohydrate Polymers, 198, 164–174.

    Article  PubMed  CAS  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Vet. Akad. Handl., 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Li, H., Chen, X., Shen, D., Wu, F., Pleixats, R., & Pan, J. (2021). Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications. NANO, 13(38), 15998–16016.

    CAS  Google Scholar 

  • Li, H., Miao, L., Zhao, G., Jia, W., & Zhu, Z. (2022). Preparation of high-performance chitosan adsorbent by cross-linking for adsorption of reactive red 2 (RR2) dye wastewater. Journal of Environmental Chemical Engineering, 10(6), 108872.

    Article  CAS  Google Scholar 

  • Liu, J., Chen, Y., Han, T., Cheng, M., Zhang, W., Long, J., & Fu, X. (2019a). A biomimetic SiO2@ chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water. Chemosphere, 214, 738–742.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Liu, M., Guo, Y., Lan, J., Zhou, Y., Dong, Q., & Guo, C. (2019b). Synthesis of Ce/SiO2 composited cross-linked chitosan flocculation material and its application in decolorization of tartrazine dye. Chemistry Select, 4(45), 13156–13162.

    CAS  Google Scholar 

  • Liu, C., Song, L., Cao, S., Zhang, H., & Han, J. (2023). Green synthesis of 2-hydroxypropyl-β-cyclodextrin polymers cross-linked by citric acid for highly efficient removal of methylene blue. Polymer, 280, 126043.

    Article  CAS  Google Scholar 

  • Lu, C., Yang, J., Khan, A., Yang, J., Li, Q., & Wang, G. (2022). A highly efficient technique to simultaneously remove acidic and basic dyes using magnetic ion-exchange microbeads. Journal of Environmental Management, 304, 114173.

    Article  PubMed  CAS  Google Scholar 

  • Mariyam, M., Sunarintyas, S., & Nuryono, N. (2023). Improving mechanical, biological, and adhesive properties of synthesized mineral trioxide aggregate by adding chitosan. Inorganic Chemistry Communications, 149, 110446.

    Article  CAS  Google Scholar 

  • Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Hameed, Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 47–54.

    Article  CAS  Google Scholar 

  • Maruthupandy, M., Muneeswaran, T., Chackaravarthi, G., Vennila, T., Anand, M., Cho, W. S., & Quero, F. (2022). Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of Congo red and rhodamine-B dye molecules. Journal of Photochemistry and Photobiology, a: Chemistry, 430, 113972.

    Article  CAS  Google Scholar 

  • Muhmed, S. A., Nor, N. A. M., Jaafar, J., Ismail, A. F., Othman, M. H. D., Rahman, M. A., Aziz, F., & Yusof, N. (2020). Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: A review. Energy, Ecology and Environment, 5, 85–107.

    Article  Google Scholar 

  • Najemalden, M. A., Ahmed, R. T., & Ali, A. A. (2018). Quality assessment of Lower Zaab river within Kirkuk Governorate using water quality index. Al-Kitab Journal for Pure Sciences, 1(2), 370–384.

    Google Scholar 

  • Nandanwar, P., Jugade, R., Gomase, V., Shekhawat, A., Bambal, A., Saravanan, D., & Pandey, S. (2023). Chitosan-biopolymer-entrapped activated charcoal for adsorption of reactive orange dye from aqueous phase and CO2 from gaseous phase. Journal of Composites Science, 7(3), 103.

    Article  CAS  Google Scholar 

  • Nguyen, N. Y., Luong, H. V. T., Pham, D. T., Tran, T. B. Q., & Dang, H. G. (2022). Chitosan-functionalized Fe3O4@SiO2 nanoparticles as a potential drug delivery system. Chemical Papers, 76(7), 4561–4570. https://doi.org/10.1007/s11696-022-02189-x

    Article  CAS  Google Scholar 

  • Normi, N. I., Abdulhameed, A. S., Jawad, A. H., Surip, S. N., Razuan, R., & Ibrahim, M. L. (2023). Hydrothermal-assisted grafting of Schiff base chitosan by salicylaldehyde for adsorptive removal of acidic dye: Statistical modeling and adsorption mechanism. Journal of Polymers and the Environment, 31(5), 1925–1937.

    Article  CAS  Google Scholar 

  • Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu (I)-polyaninile composite. Polymers, 13(20), 3490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira, F. C., Barros-Timmons, A., & Lopes-da-Silva, J. A. (2010). Preparation and characterization of chitosan/SiO2 composite films. Journal of Nanoscience and Nanotechnology, 10(4), 2816–2825.

    Article  PubMed  CAS  Google Scholar 

  • Pavithra, S., Thandapani, G., Sugashini, S., Sudha, P. N., Alkhamis, H. H., Alrefaei, A. F., & Almutairi, M. H. (2021). Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere, 271, 129415.

    Article  PubMed  CAS  Google Scholar 

  • Rafigh, S. M., & Heydarinasab, A. (2017). Mesoporous chitosan-SiO2 nanoparticles: Synthesis, characterization, and CO2 adsorption capacity. ACS Sustainable Chemistry & Engineering, 5(11), 10379–10386.

    Article  CAS  Google Scholar 

  • Raj, A., Yadav, A., Rawat, A. P., Singh, A. K., Kumar, S., Pandey, A. K., ... Pandey, A. (2021). Kinetic and thermodynamic investigations of sewage sludge biochar in removal of remazol brilliant blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology & Innovation, 23, 101556.

  • Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the Total Environment, 797, 149134.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Rostami, M. S., & Khodaei, M. M. (2023). Chitosan-based composite films to remove cationic and anionic dyes simultaneously from aqueous solutions: Modeling and optimization using RSM. International Journal of Biological Macromolecules, 235, 123723.

    Article  PubMed  CAS  Google Scholar 

  • Sadiq, A. C., Olasupo, A., Ngah, W. S. W., Rahim, N. Y., & Suah, F. B. M. (2021). A decade development in the application of chitosan-based materials for dye adsorption: A short review. International Journal of Biological Macromolecules, 191, 1151–1163.

    Article  PubMed  CAS  Google Scholar 

  • Said, H. A., Mabroum, H., Lahcini, M., Oudadesse, H., Barroug, A., Youcef, H. B., ... Noukrati, H. (2023). Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. International Journal of Biological Macromolecules, 125150.

  • Samadi, A., Xie, M., Li, J., Shon, H., Zheng, C., & Zhao, S. (2021). Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chemical Engineering Journal, 418, 129425.

  • Seyedi, M. S., Sohrabi, M. R., Motiee, F., & Mortazavinik, S. (2020). Synthesis and characterization of activated carbon@ zerovalent iron–nickel nanoadsorbent for highly efficient removal of reactive orange 16 from aqueous sample: Experimental design, kinetic, isotherm and thermodynamic studies. Research on Chemical Intermediates, 46, 1645–1662.

    Article  CAS  Google Scholar 

  • Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619.

    Article  CAS  Google Scholar 

  • Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica URSS, 12, 327–356.

    CAS  Google Scholar 

  • Thatte, C. S., Rathnam, M. V., & Pise, A. C. (2014). Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the β-isophorone oxidation. Journal of Chemical Sciences, 126, 727–737.

    Article  CAS  Google Scholar 

  • Wang, J., & Zhuang, S. (2022). Chitosan-based materials: Preparation, modification and application. Journal of Cleaner Production, 355, 131825.

    Article  CAS  Google Scholar 

  • Xu, Y., Xia, H., Zhang, Q., Cai, W., Jiang, G., & Zhang, L. (2022). Optimization of zinc and germanium recovery process from zinc oxide dust by response surface methodology. Chemistry Select, 7(44), 202203433.

    Google Scholar 

  • Yang, C., Wang, M., Wang, W., Liu, H., Deng, H., Du, Y., & Shi, X. (2022). Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydrate Polymers, 292, 119678.

    Article  PubMed  CAS  Google Scholar 

  • Yasin, A., Hussain, T., Ahmad, R., Shuaib, U., Amjad, M., Ahmad, S., & Imranullah, M. (2023). Photocatalytic and antibacterial potential of chitosan supported nickel oxide/zinc oxide composite synthesized by alcohothermal method. Water, Air, and Soil Pollution, 234, 592.

    Article  ADS  CAS  Google Scholar 

  • Zhang, S., Khan, A., Ali, N., Malik, S., Khan, H., Ali, N., & Bilal, M. (2022). Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. Environmental Research, 213, 113722.

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) for the research facilities. The author (Ruihong Wu) would like to thank Hengshui University for its scientific research funding (2023ZRZ01). The author (Zeid A. ALOthman) is thankful to the Researchers Supporting Project No. RSP2024R1, King Saud University, Riyadh, Saudi Arabia.

Funding

The author (Wu Ruihong) would like to thank Science and Technology Project of Hebei Education Department, China (ZD2022152). The author (Zeid A. ALOthman) is thankful to the Researchers Supporting Project No. RSP2024R1, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wu Ruihong, Ahmed Saud Abdulhameed, Rangabhashiyam Selvasembian, Emad Yousif, Zeid A. ALOthman, and Ali H. Jawad. The first draft of the manuscript was written by Wu Ruihong, Ahmed Saud Abdulhameed, and Ali H. Jawad, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali H. Jawad.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 159 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Abdulhameed, A.S., Selvasembian, R. et al. Optimized Hydrothermal Synthesis of Chitosan-Epichlorohydrin/Nanosilica for Efficient Reactive Dye Removal: Mechanistic Insights. Water Air Soil Pollut 235, 128 (2024). https://doi.org/10.1007/s11270-024-06943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06943-7

Keywords

Navigation