Skip to main content

Advertisement

Log in

Engineered Nanoparticles (ENPs) in the Aquatic Environment: an Overview of Their Fate and Transformations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The increasing production and utilization of nano-based commercial products have resulted in a significant release of engineered nanoparticles (ENPs) in the environment. Upon their release into the aquatic systems, ENPs interact with a wide range of natural constituents and undergo a multitude of diverse transformation processes. The majority of these transformations entail physical, chemical, and biological transformations. This review provides a comprehensive evaluation of the investigations that have scrutinized the fate and transformation behavior of ENPs such as TiO2, ZnO, CuO, Ag, Fe3O4, NiO, SiO2, CeO2, quantum dots, and carbon nanotubes. The physicochemical properties of ENPs and the prevailing environmental conditions constitute the pivotal parameters governing the environmental fate and transformation of ENPs. These transformations are intertwined with a range of environmental aspects which includes aggregation, agglomeration, sedimentation, dissolution, reduction, oxidation, sulfidation, and adsorption. Thus, the insights gleaned from these studies may help to comprehend the behavior of transformed ENPs, including their environmental fate, bioavailability, and mechanisms of toxicity. Overall, forthcoming nanomanufacturing processes should thoroughly prioritize the considerations of health, safety, and environmental consequences, all while ensuring that the functionality of consumer products remains uncompromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abbas, Q., Yousaf, B., Amina, Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https://doi.org/10.1016/j.envint.2020.105646

    Article  CAS  Google Scholar 

  • Abdolahpur Monikh, F., Arenas-Lago, D., Porcal, P., Grillo, R., Zhang, P., Guo, Z., Vijver, M. G., Peijnenburg, J. G. M., & W. (2020). Do the joint effects of size, shape and ecocorona influence the attachment and physical eco (cyto) toxicity of nanoparticles to algae? Nanotoxicology, 14(3), 310–325.

    Article  CAS  Google Scholar 

  • Abdullaeva, Z. (2017). Nanomaterials in daily life. Springer.

    Book  Google Scholar 

  • Abraham, J., Arunima, R., Nimitha, K., George, S. C., & Thomas, S. (2021). One-dimensional (1D) nanomaterials: Nanorods and nanowires; nanoscale processing. Nanoscale processing (pp. 71–101). Elsevier.

    Chapter  Google Scholar 

  • Adam, R. Z., & Khan, S. B. (2021). Antimicrobial efficacy of silver nanoparticles against Candida albicans: A systematic review protocol. PLoS ONE, 16(1), e0245811.

    Article  CAS  Google Scholar 

  • Adeleye, A. S., Conway, J. R., Perez, T., Rutten, P., & Keller, A. A. (2014). Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environmental Science & Technology, 48(21), 12561–12568. https://doi.org/10.1021/es5033426

    Article  CAS  Google Scholar 

  • Adeleye, A. S., & Keller, A. A. (2016). Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environmental Science & Technology, 50(22), 12258–12265. https://doi.org/10.1021/acs.est.6b03684

    Article  CAS  Google Scholar 

  • Afshinnia, K., Sikder, M., Cai, B., & Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics. Journal of Colloid and Interface Science, 487, 192–200.

    Article  CAS  Google Scholar 

  • Ahari, H., Anvar, A. A., Ataee, M., & Naeimabadi, M. (2021). Employing nanosilver, nanocopper, and nanoclays in food packaging production: A systematic review. Coatings, 11(5), 509.

    Article  CAS  Google Scholar 

  • Akalin, G. O. (2021). Interaction of copper (II) oxide nanoparticles with aquatic organisms: Uptake, accumulation, and toxicity. Toxicological & Environmental Chemistry, 103(4), 342–381. https://doi.org/10.1080/02772248.2021.1926463

    Article  CAS  Google Scholar 

  • Al Jabri, H., Saleem, M. H., Rizwan, M., Hussain, I., Usman, K., & Alsafran, M. (2022). Zinc oxide nanoparticles and their biosynthesis: Overview. Life, 12(4), 594.

    Article  CAS  Google Scholar 

  • Amde, M., Liu, J.-F., Tan, Z.-Q., & Bekana, D. (2017). Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A Review. Environmental Pollution, 230, 250–267.

    Article  CAS  Google Scholar 

  • Arvidsson, R., Baun, A., Furberg, A., Hansen, S. F., & Molander, S. (2018). Proxy measures for simplified environmental assessment of manufactured nanomaterials. Environmental Science & Technology, 52(23), 13670–13680.

    Article  CAS  Google Scholar 

  • Auvinen, H., Gagnon, V., Rousseau, D. P., & Du Laing, G. (2017). Fate of metallic engineered nanomaterials in constructed wetlands: Prospection and future research perspectives. Reviews in Environmental Science and Bio/technology, 16, 207–222.

    Article  Google Scholar 

  • Bai, N., Wang, S., Abuduaini, R., Zhu, X., & Zhao, Y. (2016). Isolation and characterization of Sphingomonas sp. Y2 capable of high-efficiency degradation of nonylphenol polyethoxylates in wastewater. Environmental Science and Pollution Research, 23(12), 12019–12029. https://doi.org/10.1007/s11356-016-6413-y

    Article  CAS  Google Scholar 

  • Baker, T. J., Tyler, C. R., & Galloway, T. S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257–271.

    Article  CAS  Google Scholar 

  • Bathi, J. R., Wright, L., & Khan, E. (2022). Critical review of engineered nanoparticles: Environmental concentrations and toxicity. Current Pollution Reports, 8(4), 498–518.

    Article  CAS  Google Scholar 

  • Brun, N. R., Lenz, M., Wehrli, B., & Fent, K. (2014). Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Science of the Total Environment, 476, 657–666.

    Article  Google Scholar 

  • Cao, T., & Elimelech, M. (2021). Colloidal stability of cellulose nanocrystals in aqueous solutions containing monovalent, divalent, and trivalent inorganic salts. Journal of Colloid and Interface Science, 584, 456–463.

    Article  CAS  Google Scholar 

  • Cardellini, A., Alberghini, M., Rajan, A. G., Misra, R. P., Blankschtein, D., & Asinari, P. (2019). Multi-scale approach for modeling stability, aggregation, and network formation of nanoparticles suspended in aqueous solutions. Nanoscale, 11(9), 3979–3992.

    Article  CAS  Google Scholar 

  • Cerrillo, C., Barandika, G., Igartua, A., Areitioaurtena, O., & Mendoza, G. (2016). Towards the standardization of nanoecotoxicity testing: Natural organic matter ‘camouflages’ the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Science of the Total Environment, 543, 95–104. https://doi.org/10.1016/j.scitotenv.2015.10.137

    Article  CAS  Google Scholar 

  • Chan, Y. H., Loy, A. C. M., Cheah, K. W., Chai, S. Y. W., Ngu, L. H., How, B. S., Li, C., Lock, S. S. M., Wong, M. K., & Yiin, C. L. (2023). Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chemical Engineering Journal, 458, 141398.

    Article  CAS  Google Scholar 

  • Chen, Y., Wang, J., Wen, S., Wang, C., Zhao, Z., & Li, W. (2021). Zinc phosphate coated modified hollow glass beads and their thermal insulation and anticorrosion performance in coatings. Ceramics International, 47(16), 23507–23517.

    Article  CAS  Google Scholar 

  • Chiu, C. F. (2018). Nano emitters: Fluorimetric analysis of single-walled carbon nanotubes in bio-oxidation. University of Pittsburgh.

    Google Scholar 

  • Chowdhury, I., Hou, W.-C., Goodwin, D., Henderson, M., Zepp, R. G., & Bouchard, D. (2015). Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Research, 78, 37–46.

    Article  CAS  Google Scholar 

  • da Igreja, P., Klump, D., Bartsch, J., & Thommes, M. (2022). Reduction of submicron particle agglomeration via melt foaming in solid crystalline suspension. Journal of Dispersion Science and Technology, 1–10.

  • Dahle, J. T., Livi, K., & Arai, Y. (2015). Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere, 119, 1365–1371. https://doi.org/10.1016/j.chemosphere.2014.02.027

    Article  CAS  Google Scholar 

  • Devasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., & John, S. T. (2022). Insights on the dynamics and toxicity of nanoparticles in environmental matrices. Bioinorganic Chemistry and Applications, 2022, 1–21.

    Google Scholar 

  • Domercq, P., Praetorius, A., & Boxall, A. B. (2018). Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environmental Science: Nano, 5(2), 533–543.

    CAS  Google Scholar 

  • Dube, E., & Okuthe, G. E. (2023). Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerging Contaminants, 9, 100212.

    Article  CAS  Google Scholar 

  • Dwivedi, A. D., Dubey, S. P., Sillanpää, M., Kwon, Y.-N., Lee, C., & Varma, R. S. (2015). Fate of engineered nanoparticles: Implications in the environment. Coordination Chemistry Reviews, 287, 64–78.

    Article  CAS  Google Scholar 

  • Emerson, H. P., Gebru, A., Boglaienko, D., Katsenovich, Y. P., Kandel, S., & Levitskaia, T. G. (2020). Impact of zero valent iron aging on reductive removal of technetium-99. Journal of Environmental Chemical Engineering, 8(3), 103767.

    Article  CAS  Google Scholar 

  • Fahmy, H. M., Mosleh, A. M., Abd Elghany, A., Shams-Eldin, E., Serea, E. S. A., Ali, S. A., & Shalan, A. E. (2019). Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. RSC Advances, 9(35), 20118–20136.

    Article  CAS  Google Scholar 

  • Fernando, I., & Zhou, Y. (2019). Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297–305.

    Article  CAS  Google Scholar 

  • Fréchette-Viens, L., Hadioui, M., & Wilkinson, K. J. (2019). Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta, 200, 156–162.

    Article  Google Scholar 

  • Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology, 48(5), 2526–2540.

    Article  CAS  Google Scholar 

  • Garner, K. L., & Keller, A. A. (2014a). Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. Journal of Nanoparticle Research, 16, 1–28.

    Article  Google Scholar 

  • Garner, K. L., & Keller, A. A. (2014b). Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. Journal of Nanoparticle Research, 16(8), 2503. https://doi.org/10.1007/s11051-014-2503-2

    Article  Google Scholar 

  • Garner, K. L., Suh, S., & Keller, A. A. (2017). Assessing the risk of engineered nanomaterials in the environment: Development and application of the nanoFate Model. Environmental Science & Technology, 51(10), 5541–5551. https://doi.org/10.1021/acs.est.6b05279

    Article  CAS  Google Scholar 

  • Gebre, S. H., & Sendeku, M. G. (2019). New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: An overview. SN Applied Sciences, 1, 1–28.

    Article  Google Scholar 

  • Gelabert, A., Sivry, Y., Ferrari, R., Akrout, A., Cordier, L., Nowak, S., Menguy, N., & Benedetti, M. F. (2014). Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environmental Toxicology and Chemistry, 33(2), 341–349.

    Article  CAS  Google Scholar 

  • Gentile, G. J., Fernández, M. D. B., & de Cortalezzi, M. M. F. (2021). Interparticle effects in the cotransport of viruses and engineered nanoparticles in saturated porous media. Journal of Environmental Chemical Engineering, 9(5), 106058.

    Article  CAS  Google Scholar 

  • Georgantzopoulou, A., Almeida Carvalho, P., Vogelsang, C., Tilahun, M., Ndungu, K., Booth, A. M., Thomas, K. V., & Macken, A. (2018). Ecotoxicological effects of transformed silver and titanium dioxide nanoparticles in the effluent from a lab-scale wastewater treatment system. Environmental Science & Technology, 52(16), 9431–9441.

    Article  CAS  Google Scholar 

  • Gidwani, B., Sahu, V., Shukla, S. S., Pandey, R., Joshi, V., Jain, V. K., & Vyas, A. (2021). Quantum dots: Prospectives, toxicity, advances and applications. Journal of Drug Delivery Science and Technology, 61, 102308.

    Article  CAS  Google Scholar 

  • Gomez-Gonzalez, M. A., Koronfel, M. A., Pullin, H., Parker, J. E., Quinn, P. D., Inverno, M. D., Scott, T. B., Xie, F., Voulvoulis, N., & Yallop, M. L. (2021). Nanoscale chemical imaging of nanoparticles under real-world wastewater treatment conditions. Advanced Sustainable Systems, 5(7), 2100023.

    Article  CAS  Google Scholar 

  • Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S. S., Kumar, S., & Adelodun, A. A. (2017). Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management, 196, 297–315.

    Article  CAS  Google Scholar 

  • Grillo, R., de Jesus, M. B., & Fraceto, L. F. (2018). Environmental impact of nanotechnology: Analyzing the present for building the future. Frontiers in Environmental Science, 6, 34.

    Article  Google Scholar 

  • Gudkov, S. V., Baimler, I. V., Uvarov, O. V., Smirnova, V. V., Volkov, M. Y., Semenova, A. A., & Lisitsyn, A. B. (2020). Influence of the concentration of Fe and Cu nanoparticles on the dynamics of the size distribution of nanoparticles. Frontiers in Physics, 8, 622551.

    Article  Google Scholar 

  • Guhananthan, A., Kuttykattil, A., Palanisami, T., & Rajendran, S. (2023). Sources, consequences, and control of nanoparticles and microplastics in the environment. In M. Kumar, S. Mohapatra, & K. B. T.-E. A. C. Weber (Eds.), Emerging Aquatic Contaminants (pp. 277–306). Elsevier. https://doi.org/10.1016/B978-0-323-96002-1.00006-7

  • Guo, Y., Tang, N., Guo, J., Lu, L., Li, N., Hu, T., Zhu, Z., Gao, X., Li, X., Jiang, L., & Liang, J. (2023). The aggregation of natural inorganic colloids in aqueous environment: A review. Chemosphere, 310, 136805. https://doi.org/10.1016/j.chemosphere.2022.136805

  • Ha, S.-W., Weiss, D., Weitzmann, M. N., & Beck, G. R. (2019). Applications of silica-based nanomaterials in dental and skeletal biology. In K. Subramani & W. B. T.-N. in C. D. (Second E. Ahmed (Eds.), Applications of silica-based nanomaterials in dental and skeletal biology (2nd ed., pp. 77–112). Elsevier. https://doi.org/10.1016/B978-0-12-815886-9.00004-8

  • Han, P., Wang, X., Cai, L., Tong, M., & Kim, H. (2014). Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: Effects of pH, ionic strength, and humic acid. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 454, 119–127. https://doi.org/10.1016/j.colsurfa.2014.04.020

    Article  CAS  Google Scholar 

  • Harrison, E., Nicol, J. R., Macias-Montero, M., Burke, G. A., Coulter, J. A., Meenan, B. J., & Dixon, D. (2016). A comparison of gold nanoparticle surface co-functionalization approaches using polyethylene glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Materials Science and Engineering: C, 62, 710–718.

    Article  CAS  Google Scholar 

  • Hochella, M. F., Jr., Mogk, D. W., Ranville, J., Allen, I. C., Luther, G. W., Marr, L. C., McGrail, B. P., Murayama, M., Qafoku, N. P., & Rosso, K. M. (2019). Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science, 363(6434), eaau8299.

    Article  Google Scholar 

  • Hossen, M. N., Murphy, B., García-Hevia, L., Bhattacharya, R., & Mukherjee, P. (2018). Probing cellular processes using engineered nanoparticles. Bioconjugate Chemistry, 29(6), 1793–1808. https://doi.org/10.1021/acs.bioconjchem.8b00026

    Article  CAS  Google Scholar 

  • Huang, H., Shi, H., Das, P., Qin, J., Li, Y., Wang, X., Su, F., Wen, P., Li, S., & Lu, P. (2020). The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 30(41), 1909035.

    Article  CAS  Google Scholar 

  • Huangfu, X., Xu, Y., Liu, C., He, Q., Ma, J., Ma, C., & Huang, R. (2019). A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. Chemosphere, 219, 766–783.

    Article  CAS  Google Scholar 

  • Ikuma, K., Madden, A. S., Decho, A. W., & Lau, B. L. (2014). Deposition of nanoparticles onto polysaccharide-coated surfaces: Implications for nanoparticle–biofilm interactions. Environmental Science: Nano, 1(2), 117–122.

    CAS  Google Scholar 

  • Ismael, M. (2019). Highly effective ruthenium-doped TiO 2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New Journal of Chemistry, 43(24), 9596–9605.

    Article  CAS  Google Scholar 

  • Kabir, E., Kumar, V., Kim, K.-H., Yip, A. C., & Sohn, J. R. (2018). Environmental impacts of nanomaterials. Journal of Environmental Management, 225, 261–271.

    Article  CAS  Google Scholar 

  • Kang, F., Alvarez, P. J., & Zhu, D. (2014). Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environmental Science & Technology, 48(1), 316–322. https://doi.org/10.1021/es403796x

    Article  CAS  Google Scholar 

  • Kang, X., Xia, Z., Wang, J., & Yang, W. (2019). A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solutions. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 579, 123647.

    Article  CAS  Google Scholar 

  • Kansara, K., Bolan, S., Radhakrishnan, D., Palanisami, T., Al-Muhtaseb, A. A. H., Bolan, N., Vinu, A., Kumar, A., & Karakoti, A. (2022). A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental pollution, 296, 118726. https://doi.org/10.1016/j.envpol.2021.118726

    Article  CAS  Google Scholar 

  • Khreis, H., Bredell, C., Fung, K. W., Hong, L., Szybka, M., Phillips, V., Abbas, A., Lim, Y.-H., Andersen, Z. J., & Woodcock, J. (2022). Impact of long-term air pollution exposure on incidence of neurodegenerative diseases: A protocol for a systematic review and exposure-response meta-analysis. Environment international, 170, 107596.

    Article  CAS  Google Scholar 

  • Krishna, D., & Sachan, H. K. (2021). Nano-toxicity and aquatic food chain. In P. Singh, R. Singh, P. Verma, R. Bhadouria, A. Kumar, & M. Kaushik (Eds.), Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems (pp. 189–198). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-66956-0_13

  • Kumar, C. V., Karthick, V., Kumar, V. G., Inbakandan, D., Rene, E. R., Suganya, K. U., Embrandiri, A., Dhas, T. S., Ravi, M., & Sowmiya, P. (2022). The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. Environmental Research, 212, 113202.

    Article  Google Scholar 

  • Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M.-N., Handy, R. D., McLaughlin, M. J., Judy, J. D., & Schirmer, K. (2018). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environmental Toxicology and Chemistry, 37(8), 2029–2063. https://doi.org/10.1002/etc.4147

    Article  CAS  Google Scholar 

  • Lee, Y.-L., Shih, Y.-S., Chen, Z.-Y., Cheng, F.-Y., Lu, J.-Y., Wu, Y.-H., & Wang, Y.-J. (2022). Toxic effects and mechanisms of silver and zinc oxide nanoparticles on zebrafish embryos in aquatic ecosystems. Nanomaterials, 12(4), 717.

    Article  CAS  Google Scholar 

  • Lespes, G., Faucher, S., & Slaveykova, V. I. (2020). Natural nanoparticles, anthropogenic nanoparticles, where is the frontier? Frontiers in Environmental Science, 8, 71.

    Article  Google Scholar 

  • Levak, M., Burić, P., DutourSikirić, M., DomazetJurašin, D., Mikac, N., Bačić, N., Drexel, R., Meier, F., Jakšić, Z. E., & Lyons, D. M. (2017). Effect of protein corona on silver nanoparticle stabilization and ion release kinetics in artificial seawater. Environmental Science & Technology, 51(3), 1259–1266.

    Article  CAS  Google Scholar 

  • Li, L., Fernández-Cruz, M. L., Connolly, M., Schuster, M., & Navas, J. M. (2015). Dissolution and aggregation of Cu nanoparticles in culture media: Effects of incubation temperature and particles size. Journal of Nanoparticle Research, 17, 1–11.

    Article  Google Scholar 

  • Li, Y., Zhang, W., Niu, J., & Chen, Y. (2013). Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environmental Science & Technology, 47(18), 10293–10301. https://doi.org/10.1021/es400945v

    Article  CAS  Google Scholar 

  • Li, Y., Zhao, J., Shang, E., Xia, X., Niu, J., & Crittenden, J. (2018). Effects of chloride ions on dissolution, ROS generation, and toxicity of silver nanoparticles under UV irradiation. Environmental Science & Technology, 52(8), 4842–4849. https://doi.org/10.1021/acs.est.7b04547

    Article  CAS  Google Scholar 

  • Lin, D., Tian, X., Wu, F., & Xing, B. (2010). Fate and transport of engineered nanomaterials in the environment. Journal of Environmental Quality, 39(6), 1896–1908.

    Article  Google Scholar 

  • Liu, G., Zhong, H., Ahmad, Z., Yang, X., & Huo, L. (2020). Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater. Critical Reviews in Environmental Science and Technology, 50(22), 2301–2378.

    Article  CAS  Google Scholar 

  • Liu, H., Wang, X., Wu, Y., Hou, J., Zhang, S., Zhou, N., & Wang, X. (2019). Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environmental Pollution, 246, 414–422. https://doi.org/10.1016/j.envpol.2018.12.034

    Article  CAS  Google Scholar 

  • Ma, C., Huangfu, X., He, Q., Ma, J., & Huang, R. (2018). Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: A review of interaction forces, experimental approaches, and influencing factors. Environmental Science and Pollution Research, 25, 33056–33081.

    Article  CAS  Google Scholar 

  • Ma, R., Levard, C., Michel, F. M., Brown, G. E., & Lowry, G. V. (2013). Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environmental Science & Technology, 47(6), 2527–2534. https://doi.org/10.1021/es3035347

    Article  CAS  Google Scholar 

  • Ma, R., Stegemeier, J., Levard, C., Dale, J. G., Noack, C. W., Yang, T., Brown, G. E., & Lowry, G. V. (2014). Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environmental Science: Nano, 1(4), 347–357. https://doi.org/10.1039/C4EN00018H

    Article  CAS  Google Scholar 

  • Madkour, L. H., & Madkour, L. H. (2019). Classification of nanostructured materials. In L. H. Madkour (Ed.), Nanoelectronic Materials: Fundamentals and Applications (pp. 269–307). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-21621-4_9

  • Maharramov, A., Hasanova, U., Suleymanova, I., Osmanova, G., & Hajiyeva, N. (2019). The engineered nanoparticles in food chain: Potential toxicity and effects. SN Applied Sciences, 1, 1–25.

    Article  Google Scholar 

  • Majedi, S. M., Kelly, B. C., & Lee, H. K. (2014). Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: A multiparametric analysis. Journal of Hazardous Materials, 264, 370–379. https://doi.org/10.1016/j.jhazmat.2013.11.015

    Article  CAS  Google Scholar 

  • Malakar, A., & Snow, D. D. (2020). Nanoparticles as sources of inorganic water pollutants. In P. Devi, P. Singh, & S. K. B. T.-I. P. in W. Kansal (Eds.), Inorganic Pollutants in Water (pp. 337–370). Elsevier. https://doi.org/10.1016/B978-0-12-818965-8.00017-2

  • Malejko, J., Szymańska, N., Bajguz, A., & Godlewska-Żyłkiewicz, B. (2019). Studies on the uptake and transformation of gold(iii) and gold nanoparticles in a water–green algae environment using mass spectrometry techniques. Journal of Analytical Atomic Spectrometry, 34(7), 1485–1496. https://doi.org/10.1039/C9JA00132H

    Article  CAS  Google Scholar 

  • Manikandan, S., Subbaiya, R., Saravanan, M., Ponraj, M., Selvam, M., & Pugazhendhi, A. (2022). A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere, 289, 132867.

    Article  CAS  Google Scholar 

  • Markus, A., Krystek, P., Tromp, P., Parsons, J., Roex, E., De Voogt, P., & Laane, R. (2018). Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM. Science of the Total Environment, 631, 485–495.

    Article  Google Scholar 

  • Marmiroli, M., Maestri, E., Pagano, L., Robinson, B. H., Ruotolo, R., & Marmiroli, N. (2019). Toxicology assessment of engineered nanomaterials: Innovation and tradition. In N. Marmiroli, J. C. White, & J. B. T.-E. to E. N. in the E. Song (Eds.), Exposure to Engineered Nanomaterials in the Environment (pp. 209–234). Elsevier. https://doi.org/10.1016/B978-0-12-814835-8.00008-X

  • Merdzan, V., Domingos, R. F., Monteiro, C. E., Hadioui, M., & Wilkinson, K. J. (2014). The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii. Science of the Total Environment, 488–489, 316–324. https://doi.org/10.1016/j.scitotenv.2014.04.094

    Article  CAS  Google Scholar 

  • Metreveli, G., David, J., Schneider, R., Kurtz, S., & Schaumann, G. E. (2020). Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water. Science of the Total Environment, 739, 139989.

    Article  CAS  Google Scholar 

  • Meyer, J. S., Lyons-Darden, T., Garman, E. R., Middleton, E. T., & Schlekat, C. E. (2020). Toxicity of nanoparticulate nickel to aquatic organisms: Review and recommendations for improvement of toxicity tests. Environmental Toxicology and Chemistry, 39(10), 1861–1883.

    Article  CAS  Google Scholar 

  • Misra, R. P., de Souza, J. P., Blankschtein, D., & Bazant, M. Z. (2019). Theory of surface forces in multivalent electrolytes. Langmuir, 35(35), 11550–11565.

    Article  CAS  Google Scholar 

  • Misra, S. K., Nuseibeh, S., Dybowska, A., Berhanu, D., Tetley, T. D., & Valsami-Jones, E. (2014). Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology, 8(4), 422–432. https://doi.org/10.3109/17435390.2013.796017

    Article  CAS  Google Scholar 

  • Mitrano, D. M., & Nowack, B. (2017). The need for a life-cycle based aging paradigm for nanomaterials: Importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 28(7), 072001. https://doi.org/10.1088/1361-6528/28/7/072001

    Article  CAS  Google Scholar 

  • Mittal, G., Rhee, K. Y., Mišković-Stanković, V., & Hui, D. (2018). Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Composites Part b: Engineering, 138, 122–139. https://doi.org/10.1016/j.compositesb.2017.11.028

    Article  CAS  Google Scholar 

  • Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). Chemical Engineering Journal, 258, 394–401. https://doi.org/10.1016/j.cej.2014.06.112

    Article  CAS  Google Scholar 

  • Murjani, B. O., Kadu, P. S., Bansod, M., Vaidya, S. S., & Yadav, M. D. (2022). Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carbon Letters, 32(5), 1207–1226.

    Article  Google Scholar 

  • Nanja, A. F., Focke, W. W., & Musee, N. (2020). Aggregation and dissolution of aluminium oxide and copper oxide nanoparticles in natural aqueous matrixes. SN Applied Sciences, 2, 1–16.

    Article  Google Scholar 

  • Naqvi, S., Kumar, V., & Gopinath, P. (2018). Nanomaterial toxicity: A challenge to end users. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. B. T.-A. of N. Thomas (Eds.), Applications of Nanomaterials (pp. 315–343). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101971-9.00012-0

  • Nasser, F., Constantinou, J., & Lynch, I. (2020). Nanomaterials in the environment acquire an “Eco-Corona” impacting their toxicity to Daphnia Magna—A call for updating toxicity testing policies. Proteomics, 20(9), 1800412. https://doi.org/10.1002/pmic.201800412

    Article  CAS  Google Scholar 

  • Natarajan, L., Jenifer, M. A., & Mukherjee, A. (2021). Eco-corona formation on the nanomaterials in the aquatic systems lessens their toxic impact: A comprehensive review. Environmental Research, 194, 110669.

    Article  CAS  Google Scholar 

  • Natarajan, M., Selvam, V., & Swaminathan, S. (2017). Role of silicon in kidney, cardiovascular, bone health and implants in humans–A mini review.

  • Neagu, M., Piperigkou, Z., Karamanou, K., Engin, A. B., Docea, A. O., Constantin, C., Negrei, C., Nikitovic, D., & Tsatsakis, A. (2017). Protein bio-corona: Critical issue in immune nanotoxicology. Archives of Toxicology, 91(3), 1031–1048. https://doi.org/10.1007/s00204-016-1797-5

    Article  CAS  Google Scholar 

  • Nguyen, K. C., Seligy, V. L., Massarsky, A., Moon, T. W., Rippstein, P., Tan, J., & Tayabali, A. F. (2013). Comparison of toxicity of uncoated and coated silver nanoparticles. Journal of Physics: Conference Series, 429, 012025. https://doi.org/10.1088/1742-6596/429/1/012025

    Article  CAS  Google Scholar 

  • Odzak, N., Kistler, D., Behra, R., & Sigg, L. (2014). Dissolution of metal and metal oxide nanoparticles in aqueous media. Environmental Pollution, 191, 132–138. https://doi.org/10.1016/j.envpol.2014.04.010

    Article  CAS  Google Scholar 

  • Oney, D. M., & Nason, J. A. (2021). Natural organic matter surface coverage as a predictor of heteroaggregation between nanoparticles and colloids. Environmental Science: Nano, 8(3), 687–697.

    CAS  Google Scholar 

  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z. K., & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799–6814.

    Article  CAS  Google Scholar 

  • Palmerston Mendes, L., Pan, J., & Torchilin, V. P. (2017). Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 22(9), 1401.

    Article  Google Scholar 

  • Peixoto, J., Silva, L. P., & Krüger, R. H. (2017). Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials, 324, 634–644. https://doi.org/10.1016/j.jhazmat.2016.11.037

    Article  CAS  Google Scholar 

  • Pelleg, J. (2021). What are nanomaterials and why the interest in It BT - Mechanical Properties of Nanomaterials. In J. Pelleg (Ed.), Mechanical Properties of Nanomaterials (pp. 1–5). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-74652-0_1

  • Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., & Chen, Y. (2017). Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials, 7(1), 21.

    Article  Google Scholar 

  • Percebom, A. M., Giner-Casares, J. J., Claes, N., Bals, S., Loh, W., & Liz-Marzán, L. M. (2016). Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chemical Communications, 52(23), 4278–4281.

    Article  CAS  Google Scholar 

  • Pokrajac, L., Abbas, A., Chrzanowski, W., Dias, G. M., Eggleton, B. J., Maguire, S., Maine, E., Malloy, T., Nathwani, J., & Nazar, L. (2021). Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology. ACS Nano, 15(12), 18608–18623. https://doi.org/10.1021/acsnano.1c10919

    Article  CAS  Google Scholar 

  • Prasad, R. D., Charmode, N., Shrivastav, O. P., Prasad, S. R., Moghe, A., Sarvalkar, P. D., & Prasad, N. R. (2021). A review on concept of nanotechnology in veterinary medicine. ES Food & Agroforestry, 4, 28–60.

    CAS  Google Scholar 

  • Pulido-Reyes, G., Leganes, F., Fernández-Piñas, F., & Rosal, R. (2017). Bio-nano interface and environment: A critical review. Environmental Toxicology and Chemistry, 36(12), 3181–3193. https://doi.org/10.1002/etc.3924

    Article  CAS  Google Scholar 

  • Purohit, J., Chattopadhyay, A., & Singh, N. K. (2019). Green synthesis of microbial nanoparticle: Approaches to application. In R. Prasad (Ed.), Microbial Nanobionics (pp. 35–60). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-16534-5_3

  • Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A., & van de Meent, D. (2014). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 48, 269–279. https://doi.org/10.1016/j.watres.2013.09.036

    Article  CAS  Google Scholar 

  • Rand, L. N., Flores, K., Sharma, N., Gardea-Torresdey, J., & Westerhoff, P. (2021). Quantifying nanoparticle associated Ti, Ce, Au, and Pd occurrence in 35 US surface waters. ACS ES&T Water, 1(10), 2242–2250.

    Article  CAS  Google Scholar 

  • Rathnayake, S., Unrine, J. M., Judy, J., Miller, A.-F., Rao, W., & Bertsch, P. M. (2014). Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles. Environmental Science & Technology, 48(9), 4757–4764. https://doi.org/10.1021/es404544w

    Article  CAS  Google Scholar 

  • Rawat, S., Pullagurala, V. L., Adisa, I. O., Wang, Y., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Current Opinion in Environmental Science & Health, 6, 47–53.

    Article  Google Scholar 

  • Ray, J. R., Wu, X., Neil, C. W., Jung, H., Li, Z., & Jun, Y.-S. (2019). Redox chemistry of CeO 2 nanoparticles in aquatic systems containing Cr (vi)(aq) and Fe 2+ ions. Environmental Science: Nano, 6(7), 2269–2280.

    CAS  Google Scholar 

  • Rhiem, S., Barthel, A.-K., Meyer-Plath, A., Hennig, M. P., Wachtendorf, V., Sturm, H., Schäffer, A., & Maes, H. M. (2016). Release of 14C-labelled carbon nanotubes from polycarbonate composites. Environmental Pollution, 215, 356–365. https://doi.org/10.1016/j.envpol.2016.04.098

    Article  CAS  Google Scholar 

  • Rocha, T. L., Mestre, N. C., Sabóia-Morais, S. M. T., & Bebianno, M. J. (2017). Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. Environment International, 98, 1–17.

    Article  CAS  Google Scholar 

  • Said, Z., Sundar, L. S., Tiwari, A. K., Ali, H. M., Sheikholeslami, M., Bellos, E., & Babar, H. (2022). Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports, 946, 1–94. https://doi.org/10.1016/j.physrep.2021.07.002

    Article  CAS  Google Scholar 

  • Sanchez, L. M., Martin, D. A., Alvarez, V. A., & Gonzalez, J. S. (2018). Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 543, 28–37.

    Article  CAS  Google Scholar 

  • Sari Erkan, H., Bakaraki Turan, N., Onkal Engin, G., & Bilgili, M. (2021). A review of advantages and challenges of using engineered nanoparticles for waste and wastewater treatments. International Journal of Environmental Science and Technology, 18, 3295–3306.

    Article  CAS  Google Scholar 

  • Sathiyapriya, R., Hariharan, V., Prabakaran, K., Durairaj, M., Aroulmoji, V., Sathiyapriya, R., et al. (2019). Nanotechnology in materials and medical sciences. International Journal of Advanced Science and Engineering, 5(3), 1077–1084.

  • Scherer, M. D., Sposito, J. C., Falco, W. F., Grisolia, A. B., Andrade, L. H., Lima, S. M., Machado, G., Nascimento, V. A., Gonçalves, D. A., & Wender, H. (2019). Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Science of the Total Environment, 660, 459–467.

    Article  CAS  Google Scholar 

  • Sendra, M., Yeste, P., Moreno-Garrido, I., Gatica, J. M., & Blasco, J. (2017). CeO2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Science of the Total Environment, 590, 304–315.

    Article  Google Scholar 

  • Shafey, A. M. E. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304–339.

    Article  Google Scholar 

  • Sharma, A., Singh, R., Singari, R. M., & Bhandarkar, S. (2022). Influence of nanoparticles in different types of cutting fluids: A literature review. Advances in Mechanical and Materials Technology: Select Proceedings of EMSME, 2020, 237–252.

    Article  Google Scholar 

  • Sherje, A. P., Jadhav, M., Dravyakar, B. R., & Kadam, D. (2018). Dendrimers: A versatile nanocarrier for drug delivery and targeting. International Journal of Pharmaceutics, 548(1), 707–720.

    Article  CAS  Google Scholar 

  • Shevlin, D., O’Brien, N., & Cummins, E. (2018). Silver engineered nanoparticles in freshwater systems–Likely fate and behaviour through natural attenuation processes. Science of the Total Environment, 621, 1033–1046.

    Article  CAS  Google Scholar 

  • Shrestha, S., Wang, B., & Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279, 102162.

    Article  CAS  Google Scholar 

  • Sigmund, G., Jiang, C., Hofmann, T., & Chen, W. (2018). Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano, 5(11), 2500–2518.

    CAS  Google Scholar 

  • Sun, T. Y., Bornhoft, N. A., Hungerbühler, K., & Nowack, B. (2016). Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environmental Science & Technology, 50(9), 4701–4711.

    Article  CAS  Google Scholar 

  • Sun, T. Y., Gottschalk, F., Hungerbühler, K., & Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 185, 69–76. https://doi.org/10.1016/j.envpol.2013.10.004

    Article  CAS  Google Scholar 

  • Surendhiran, D., Cui, H., & Lin, L. (2020). Mode of transfer, toxicity and negative impacts of engineered nanoparticles on environment, human and animal health. In The ELSI Handbook of Nanotechnology (pp. 165– 204). https://doi.org/10.1002/9781119592990.ch9

  • Syafiuddin, A., Salmiati, S., Hadibarata, T., Kueh, A. B. H., Salim, M. R., & Zaini, M. A. A. (2018). Silver nanoparticles in the water environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Scientific Reports, 8(1), 986.

    Article  Google Scholar 

  • Troester, M., Brauch, H.-J., & Hofmann, T. (2016). Vulnerability of drinking water supplies to engineered nanoparticles. Water Research, 96, 255–279.

    Article  CAS  Google Scholar 

  • Turan, N. B., Erkan, H. S., Engin, G. O., & Bilgili, M. S. (2019). Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Safety and Environmental Protection, 130, 238–249.

    Article  CAS  Google Scholar 

  • Upendar, S., Mani, E., & Basavaraj, M. G. (2018). Aggregation and stabilization of colloidal spheroids by oppositely charged spherical nanoparticles. Langmuir, 34(22), 6511–6521.

    Article  CAS  Google Scholar 

  • Vaiani, L., Boccaccio, A., Uva, A. E., Palumbo, G., Piccininni, A., Guglielmi, P., Cantore, S., Santacroce, L., Charitos, I. A., & Ballini, A. (2023). Ceramic materials for biomedical applications: An overview on properties and fabrication processes. Journal of Functional Biomaterials, 14(3), 146.

    Article  CAS  Google Scholar 

  • Van Koetsem, F., Woldetsadik, G. S., Folens, K., Rinklebe, J., & Du Laing, G. (2018). Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability. Chemosphere, 200, 471–480.

    Article  Google Scholar 

  • Walser, T., Limbach, L. K., Brogioli, R., Erismann, E., Flamigni, L., Hattendorf, B., Juchli, M., Krumeich, F., Ludwig, C., & Prikopsky, K. (2012). Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature Nanotechnology, 7(8), 520–524.

    Article  CAS  Google Scholar 

  • Wang, F., Liu, Y., Cao, M., Zhou, B., Chen, H., Yuan, R., Liu, S., & Xing, B. (2023). Mechanisms of ZnO nanoparticles enhancing phototransformation of biologically derived organic phosphorus in aquatic environments. Environmental Science & Technology, 57(9), 3691–3702.

    Article  CAS  Google Scholar 

  • Wang, J., Nabi, M. M., Mohanty, S. K., Afrooz, A. N., Cantando, E., Aich, N., & Baalousha, M. (2020). Detection and quantification of engineered particles in urban runoff. Chemosphere, 248, 126070.

    Article  CAS  Google Scholar 

  • Wang, L., Yang, X., Wang, Q., Zeng, Y., Ding, L., & Jiang, W. (2017). Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes. Journal of Environmental Sciences, 51, 248–255. https://doi.org/10.1016/j.jes.2016.07.003

    Article  CAS  Google Scholar 

  • Wang, S., Alenius, H., El-Nezami, H., & Karisola, P. (2022). A new look at the effects of engineered ZnO and TiO2 nanoparticles: Evidence from transcriptomics studies. Nanomaterials, 12(8), 1247.

    Article  Google Scholar 

  • Wang, X., Ma, E., Shen, X., Guo, X., Zhang, M., Zhang, H., Liu, Y., Cai, F., Tao, S., & Xing, B. (2014). Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles. Environmental Pollution, 194, 31–37. https://doi.org/10.1016/j.envpol.2014.06.039

    Article  CAS  Google Scholar 

  • Wang, Y., & Nowack, B. (2018). Environmental risk assessment of engineered nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots. Environmental Toxicology and Chemistry, 37(5), 1387–1395.

    Article  CAS  Google Scholar 

  • Wimmer, A., Ritsema, R., Schuster, M., & Krystek, P. (2019). Sampling and pre-treatment effects on the quantification of (nano) silver and selected trace elements in surface water-Application in a Dutch case study. Science of the Total Environment, 663, 154–161.

    Article  CAS  Google Scholar 

  • Wu, D., Yang, S., Du, W., Yin, Y., Zhang, J., & Guo, H. (2019). Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release. Journal of Hazardous Materials, 377, 1–7.

    Article  CAS  Google Scholar 

  • Xiao, Y., Peijnenburg, W. J., Chen, G., & Vijver, M. G. (2016). Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions. Science of the Total Environment, 563, 81–88.

    Article  Google Scholar 

  • Xiong, J.-Q., Cui, P., Ru, S., Kurade, M. B., Patil, S. M., Yadav, K. K., Fallatah, A. M., Cabral-Pinto, M. M., & Jeon, B.-H. (2022). A comprehensive review on the effects of engineered nanoparticles on microalgal treatment of pollutants from wastewater. Journal of Cleaner Production, 344, 131121.

    Article  CAS  Google Scholar 

  • Xu, Q., Li, W., Ding, L., Yang, W., Xiao, H., & Ong, W.-J. (2019). Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: Mechanism, properties and applications. Nanoscale, 11(4), 1475–1504.

    Article  CAS  Google Scholar 

  • Yadav, M., Gupta, R., & Sharma, R. K. (2019). Green and sustainable pathways for wastewater purification. In S. B. T.-A. in W. P. T. Ahuja (Ed.), Advances in Water Purification Techniques (pp. 355–383). Elsevier. https://doi.org/10.1016/B978-0-12-814790-0.00014-4

  • Yadav, P. K., Kochar, C., Taneja, L., & Tripathy, S. S. (2022). Study on dissolution behavior of CuO nanoparticles in various synthetic media and natural aqueous medium. Journal of Nanoparticle Research, 24(6), 122.

    Article  CAS  Google Scholar 

  • Yang, X., Lin, S., & Wiesner, M. R. (2014). Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. Journal of Hazardous Materials, 264, 161–168.

    Article  CAS  Google Scholar 

  • Yates, M. D., Cusick, R. D., & Logan, B. E. (2013). Extracellular palladium nanoparticle production using Geobacter sulfurreducens. ACS Sustainable Chemistry & Engineering, 1(9), 1165–1171. https://doi.org/10.1021/sc4000785

    Article  CAS  Google Scholar 

  • Yin, Y., Yang, X., Zhou, X., Wang, W., Yu, S., Liu, J., & Jiang, G. (2015). Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. Journal of Environmental Sciences, 34, 116–125.

    Article  CAS  Google Scholar 

  • Yousuf, R. S. (2016). Engineered nanoparticles (ENPs) in the aquatic environment: A review. International Research Journal of Environmental Sciences, 5(3), 75–79.

    Google Scholar 

  • Yu, S.-J., Yin, Y.-G., Chao, J.-B., Shen, M.-H., & Liu, J.-F. (2014). Highly dynamic PVP-coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+. Environmental Science & Technology, 48(1), 403–411. https://doi.org/10.1021/es404334a

    Article  CAS  Google Scholar 

  • Yu, S., Liu, J., Yin, Y., & Shen, M. (2018). Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects. Journal of Environmental Sciences, 63, 198–217.

    Article  CAS  Google Scholar 

  • Zaheer, T., Ali, M. M., Abbas, R. Z., Atta, K., Amjad, I., Suleman, A., Khalid, Z., & Aqib, A. I. (2022). Insights into nanopesticides for Ticks: The superbugs of livestock. Oxidative Medicine and Cellular Longevity, 2022, 1–8.

    Article  Google Scholar 

  • Zhang, J., Guo, W., Li, Q., Wang, Z., & Liu, S. (2018). The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environmental Science: Nano, 5(11), 2482–2499.

    CAS  Google Scholar 

  • Zhang, L., Lei, C., Chen, J., Yang, K., Zhu, L., & Lin, D. (2015). Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon, 83, 198–207.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, J., Yang, K., Liu, J., & Lin, D. (2016). Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environmental Pollution, 211, 132–140. https://doi.org/10.1016/j.envpol.2015.12.041

    Article  CAS  Google Scholar 

  • Zhang, Y., Meng, T., Shi, L., Guo, X., Si, X., Yang, R., & Quan, X. (2019). The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna. Science of the Total Environment, 649, 163–171.

    Article  CAS  Google Scholar 

  • Zhou, D., Liang, M., Bao, X., Sun, T., & Huang, Y. (2022). Effects of soil colloids on the aggregation and degradation of engineered nanoparticles (Ti3C2Tx MXene). Environmental Research, 214, 113886.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rex M, C., Anand, S., Rai, P.K. et al. Engineered Nanoparticles (ENPs) in the Aquatic Environment: an Overview of Their Fate and Transformations. Water Air Soil Pollut 234, 462 (2023). https://doi.org/10.1007/s11270-023-06488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06488-1

Keywords

Navigation