Skip to main content
Log in

A review of advantages and challenges of using engineered nanoparticles for waste and wastewater treatments

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The continuous increase in engineered nanoparticles (ENPs) usage in environmental, industrial and agricultural applications is known to be associated with their further release to the environment. Recently, the presence of nanoparticles in wastewater and sewage systems has become one of the negotiable topics taking the attention of many scientists. ENPs can be evaluated as pollutants that must be eliminated from wastewater before being discharged to the aquatic and soil environment due to their potential toxicity risks. However, the supportive role of ENPs in the wastewater treatment process is discovered recently highlighting their possible usage in different treatment methods. ENPs can offer novel opportunities for the development of new generation water treatment systems, as they enable modular and multifunctional treatment solutions. This review paper focuses mainly on the effects of ENPs’ presence in wastewater and activated sludge. Besides, the paper discusses the beneficial usage and possible applications of ENPs in different treatment technologies enhancing the treatment process in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas Q, Yousaf B, Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M (2020) Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ Int 138:105646

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Ji M-K, Kim H-C, Paeng K-J, Jeon B-H (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manag 115:257–264

    Article  CAS  Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Alvarez PJ, Chan CK, Elimelech M, Halas NJ, Villagrán D (2018) Emerging opportunities for nanotechnology to enhance water security. Nat Nanotechnol 13:634

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat M (2019) Remediation of wastewater using various nano-materials. Arab J Chem 12:4897–4919

    Article  CAS  Google Scholar 

  • Barton LE, Auffan M, Olivi L, Bottero J-Y, Wiesner MR (2015) Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment. Environ Pollut 203:122–129

    Article  CAS  Google Scholar 

  • Baruah A, Chaudhary V, Malik R, Tomer VK (2019) Nanotechnology based solutions for wastewater treatment. Nanotechnology in Water and wastewater treatment. Elsevier, Amsterdam, pp 337–368

    Chapter  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  Google Scholar 

  • Ben-Sasson M et al (2014) situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:260–270

    Article  CAS  Google Scholar 

  • Ben-Sasson M, Lu X, Nejati S, Jaramillo H, Elimelech M (2016) situ surface functionalization of reverse osmosis membranes with biocidal copper nanoparticles. Desalination 388:1–8

    Article  CAS  Google Scholar 

  • Bikshapathi M, Mathur GN, Sharma A, Verma N (2011) Surfactant-enhanced multiscale carbon webs including nanofibers and Ni-nanoparticles for the removal of gaseous persistent organic pollutants. Ind Eng Chem Res 51:2104–2112

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi R, Surampalli R (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520

    Article  CAS  Google Scholar 

  • Cervantes-Avilés P, Huang Y, Keller AA (2019) Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. Water Res 156:188–198

    Article  CAS  Google Scholar 

  • Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  Google Scholar 

  • Choi S, Johnston MV, Wang G-S, Huang C (2017) Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: qualification and quantification aspects. Sci Total Environ 590:809–817

    Article  CAS  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114

    Article  CAS  Google Scholar 

  • De Gusseme B et al (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Article  CAS  Google Scholar 

  • Erkan HS, Turan NB, Engin GÖ (2018) Membrane bioreactors for wastewater treatment. Comprehensive analytical chemistry, vol 81. Elsevier, Amsterdam, pp 151–200

    Google Scholar 

  • Figoli A, Dorraji MSS, Amani-Ghadim AR (2017) Application of nanotechnology in drinking water purification. Water purification. Elsevier, Amsterdam, pp 119–167

    Chapter  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • García A et al (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  • Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Daud WRW (2011) Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int J Hydrog Energy 36:13746–13752

    Article  CAS  Google Scholar 

  • Ghasemi M, Daud WRW, Hassan SH, Oh S-E, Ismail M, Rahimnejad M, Jahim JM (2013) Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloy Compd 580:245–255

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048

    CAS  Google Scholar 

  • Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hasbullah H et al (2019) Nanoengineered materials for water and wastewater treatments. Nanotechnology in water and wastewater treatment. Elsevier, Amsterdam, pp 303–335

    Chapter  Google Scholar 

  • Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425

    Article  CAS  Google Scholar 

  • Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K (2019) Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Total Environ 656:808–833

    Article  CAS  Google Scholar 

  • Hou L, Li K, Ding Y, Li Y, Chen J, Wu X, Li X (2012) Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 87:248–252

    Article  CAS  Google Scholar 

  • Hou J, Miao L, Wang C, Wang P, Ao Y, Qian J, Dai S (2014) Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes. J Hazard Mater 276:164–170

    Article  CAS  Google Scholar 

  • Huangfu X, Xu Y, Liu C, He Q, Ma J, Ma C, Huang R (2019) A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. Chemosphere 219:766–783

    Article  CAS  Google Scholar 

  • Jacobsen BN, Nyholm N, Pedersen BM, Poulsen O, Østfeldt P (1993) Removal of organic micropollutants in laboratory activated sludge reactors under various operating conditions: sorption. Water Res 27:1505–1510

    Article  CAS  Google Scholar 

  • Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43:2322–2327

    Article  CAS  Google Scholar 

  • Jie G, Kongyin Z, Xinxin Z, Zhijiang C, Min C, Tian C, Junfu W (2015) Preparation and characterization of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel nano-filtration membrane. Mater Lett 157:112–115

    Article  CAS  Google Scholar 

  • Kim B, Park C-S, Murayama M, Hochella MF Jr (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514

    Article  CAS  Google Scholar 

  • Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, Cahill JD, Jorgensen GR (2006) Survey of organic wastewater contaminants in biosolids destined for land application. Environ Sci Technol 40:7207–7215

    Article  CAS  Google Scholar 

  • Kiser M, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    Article  CAS  Google Scholar 

  • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44:4105–4114

    Article  CAS  Google Scholar 

  • Kloepfer J, Mielke R, Nadeau J (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  CAS  Google Scholar 

  • Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ (2017) Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water purification. Elsevier, Amsterdam, pp 33–74

    Chapter  Google Scholar 

  • Kunhikrishnan A, Shon HK, Bolan NS, El Saliby I, Vigneswaran S (2015) Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit Rev Environ Sci Technol 45:277–318

    Article  CAS  Google Scholar 

  • Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, Castillo JR (2016) Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal Chim Acta 904:10–32

    Article  CAS  Google Scholar 

  • Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665

    Article  CAS  Google Scholar 

  • Lee J, Mackeyev Y, Cho M, Wilson LJ, Kim J-H, Alvarez PJ (2010) C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst. Environ Sci Technol 44:9488–9495

    Article  CAS  Google Scholar 

  • Li QL, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602. https://doi.org/10.1016/j.watres.2008.08.015

    Article  CAS  Google Scholar 

  • Liang Z, Das A, Hu Z (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44:5432–5438

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Qiu X, Burda C (2007) Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A Chem 190:94–100

    Article  CAS  Google Scholar 

  • Lu X et al. (2017) Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. In: Proceedings of the national academy of sciences, p 201710996

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Ma L, Zhang W-X (2008) Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. ACS Publications, Washington, D.C.

    Book  Google Scholar 

  • Ma X, Anand D, Zhang X, Talapatra S (2011) Adsorption and desorption of chlorinated compounds from pristine and thermally treated multiwalled carbon nanotubes. J Phys Chem C 115:4552–4557

    Article  CAS  Google Scholar 

  • Ma R et al (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112

    Article  CAS  Google Scholar 

  • Ma R et al (2019) A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal Today 335:20–30

    Article  CAS  Google Scholar 

  • Mauter MS, Zucker I, Perreault F, Werber JR, Kim J-H, Elimelech M (2018) The role of nanotechnology in tackling global water challenges. Nat Sustain 1:166

    Article  Google Scholar 

  • Mei X, Wang Z, Zheng X, Huang F, Ma J, Tang J, Wu Z (2014) Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles. J Membr Sci 451:169–176

    Article  CAS  Google Scholar 

  • Meng FG, Chae SR, Drews A, Kraume M, Shin HS, Yang FL (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512

    Article  CAS  Google Scholar 

  • Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • O’Brien N, Cummins E (2008) Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Hum Ecol Risk Assess 14:568–592

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  • Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:eaab0530

    Article  CAS  Google Scholar 

  • Perreault F, De Faria AF, Nejati S, Elimelech M (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9:7226–7236

    Article  CAS  Google Scholar 

  • Puay N-Q, Qiu G, Ting Y-P (2015) Effect of Zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor. J Clean Prod 88:139–145

    Article  CAS  Google Scholar 

  • Qu XL, Alvarez PJJ, Li QL (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Recillas S, Colón J, Casals E, González E, Puntes V, Sánchez A, Font X (2010) Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J Hazard Mater 184:425–431

    Article  CAS  Google Scholar 

  • Rikta SY (2019) Application of nanoparticles for disinfection and microbial control of water and wastewater. Nanotechnology in water and wastewater treatment. Elsevier, Amsterdam, pp 159–176

    Chapter  Google Scholar 

  • Rittmann BE, McCarty PL (2012) Environmental biotechnology: principles and applications. Tata McGraw-Hill Education, New York

    Google Scholar 

  • Salman M, Jahan S, Kanwal S, Mansoor F (2019) Recent advances in the application of silica nanostructures for highly improved water treatment: a review. Environ Sci Pollut Res 26:21065–21084

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Sarioglu OF, Yasa O, Celebioglu A, Uyar T, Tekinay T (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15:2566–2572

    Article  CAS  Google Scholar 

  • Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45:6039–6050

    Article  CAS  Google Scholar 

  • Sheng G-P, Zhang M-L, Yu H-Q (2008) Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge. Coll Surf B Biointerfaces 62:83–90

    Article  CAS  Google Scholar 

  • Sigmund G, Jiang C, Hofmann T, Chen W (2018) Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environ Sci NANO 5:2500–2518

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Coll Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • Sun TY, Bornhöft NA, Hungerbühler K, Nowack B (2016) Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50:4701–4711

    Article  CAS  Google Scholar 

  • Suthar RG, Gao B (2017) Nanotechnology for drinking water purification. Water purification. Elsevier, Amsterdam, pp 75–118

    Chapter  Google Scholar 

  • Tan M, Qiu G, Ting Y-P (2015) Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor. Bioresour Technol 185:125–133

    Article  CAS  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  • Tchobanoglus G, Burton F, Stensel HD (2003) Wastewater engineering: Treatment and reuse. Am Water Works Assoc J 95:201

    Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • Thines R, Mubarak N, Nizamuddin S, Sahu J, Abdullah E, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    Article  CAS  Google Scholar 

  • Turan NB, Erkan HS, Engin GO, Bilgili MS (2019) Nanoparticles in the aquatic environment: usage, properties, transformation and toxicity—a review. Process Saf Environ Prot 130:238–249

    Article  CAS  Google Scholar 

  • Velzeboer I, Kwadijk C, Koelmans A (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48:4869–4876

    Article  CAS  Google Scholar 

  • Wang Y, Westerhoff P, Hristovski KD (2012) Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201:16–22

    Article  CAS  Google Scholar 

  • Wang Z, Huang F, Mei X, Wang Q, Song H, Zhu C, Wu Z (2014) Long-term operation of an MBR in the presence of zinc oxide nanoparticles reveals no significant adverse effects on its performance. J Membr Sci 471:258–264

    Article  CAS  Google Scholar 

  • Wang F, Haftka JJ-H, Sinnige TL, Hermens JL, Chen W (2014) Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles. Environ Pollut 186:226–233

    Article  CAS  Google Scholar 

  • Wu L, Ritchie SM (2008) Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles. Environ Progr 27:218–224

    Article  CAS  Google Scholar 

  • Wu J, Li H, Wang J, Li Z (2013) Swift adsorptive removal of congo Red from aqueous solution by K1. 33Mn8O16 nanowires. J Nanosci Nanotechnol 13:5452–5460

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008

    Article  CAS  Google Scholar 

  • Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495

    Article  CAS  Google Scholar 

  • Yavuz CT et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J Membr Sci 437:237–248

    Article  CAS  Google Scholar 

  • Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Article  CAS  Google Scholar 

  • Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45:5888–5924

    Article  CAS  Google Scholar 

  • Zhang DQ, Eng CY, Stuckey DC, Zhou Y (2017) Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor. Chemosphere 171:446–459

    Article  CAS  Google Scholar 

  • Zheng X, Wu R, Chen Y (2011) Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ Sci Technol 45:2826–2832

    Article  CAS  Google Scholar 

  • Zheng X, Wang J, Chen Y, Wei Y (2018) Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. J Hazard Mater 344:291–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sari Erkan.

Ethics declarations

Conflict of interest

The authors declare that there is no personal, ethical, political or financial conflict of interest.

Additional information

Editorial responsibility: Anna Grobelak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari Erkan, H., Bakaraki Turan, N., Onkal Engin, G. et al. A review of advantages and challenges of using engineered nanoparticles for waste and wastewater treatments. Int. J. Environ. Sci. Technol. 18, 3295–3306 (2021). https://doi.org/10.1007/s13762-020-03054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03054-8

Keywords

Navigation