Skip to main content
Log in

Remediation of Environmental Contaminants Through Phytotechnology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Environmental pollution caused by organic pollutants, radionuclides, and potentially toxic elements (PTEs) affects the quality of the biosphere (water, air, and soil). Rapid industrial growth, mining, agricultural inputs, sewage water, and industrial effluents application in soil all contribute to contamination. Remediation of these valuable resources, as well as prevention of new pollutants, have long been required to avoid negative health effects. Several remediation strategies have been applied for environmental pollutants. Phytoremediation is potentially a viable and promising approach which uses green plants to remove, detoxify, or degrade toxic PTEs from the environment. In this review, the application of phytotechnology for pollutants removal and their underlying mechanisms (phytoextraction/phytoaccumulation, phytotransformation, phytostimulation, phytovolatilization, phytorhizodegration, and phytostabilization) were studied. The current study pointed out that the efficiency of phytoremediation can be affected by various factors such as treatment time, temperature, pH, EC, OM, plant density, electric field, and chelating agents. In the end, this review systematically summarized existing knowledge, merits/demerits, prospects, and future aspects of the phytoremediation for remediating polluted soil and water bodies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Adeoye, A. O., Adebayo, I. A., Afodun, A. M., & Ajijolakewu, K. A. (2022). Benefits and limitations of phytoremediation: Heavy metal remediation review. Phytoremediation, (pp. 227–238). Elsevier.

  • Adhikari, T., & Kumar, A. (2012). Phytoaccumulation and tolerance of Riccinus communis L. to nickel. International Journal of Phytoremediation, 14, 481–492.

    Article  CAS  Google Scholar 

  • Adilouglu S, others (2016). Using phytoremediation with canola to remove cobalt from agricultural soils. Polish Journal of Environmental 25:2251–2254.

  • Adki, V. S., Jadhav, J. P., & Bapat, V. A. (2012). Exploring the phytoremediation potential of cactus (Nopalea cochenillifera Salm. Dyck.) cell cultures for textile dye degradation. International Journal of Phytoremediation, 14, 554–569.

    Article  CAS  Google Scholar 

  • Agarwal, P., Sarkar, M., Chakraborty, B., & Banerjee, T. (2019). Phytoremediation of air pollutants: Prospects and challenges (pp. 221–241). Phytomanagement of Polluted Sites. Elsevier.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • Allam, A., Tawfik, A., Negm, A., et al., (2015). Treatment of drainage water containing pharmaceuticals using duckweed (Lemna Gibba). Energy Procedia 74:973–980 and in polypharmacy on behavioral manifestations and oxidative stress in lithium-pilocarpine-induced model. Journal of Physiology and Pharmacology, 4, 547–564.

    Google Scholar 

  • Antosiewicz, D. M., Escudue-Duran, C., Wierzbowska, E., & Skłodowska, A. (2008). Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollution, 193, 197–210.

    Article  CAS  Google Scholar 

  • Arora, A., Saxena, S., & Sharma, D. K. (2006). Tolerance and phytoaccumulation of chromium by three Azolla species. World Journal of Microbiology and Biotechnology, 22, 97–100.

    Article  CAS  Google Scholar 

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 1–18.

    Article  CAS  Google Scholar 

  • Babaeian, E., Homaee, M., & Rahnemaie, R. (2016). Chelate-enhanced phytoextraction and phytostabilization of lead-contaminated soils by carrot (Daucus carota). Archives of Agronomy and Soil Science, 62, 339–358.

    Article  CAS  Google Scholar 

  • Bahemmat, M., Farahbakhsh, M., & Kianirad, M. (2016). Humic substances-enhanced electroremediation of heavy metals contaminated soil. Journal of Hazardous Materials, 312, 307–318.

    Article  CAS  Google Scholar 

  • Bakkaus, E., Gouget, B., Gallien, J.-P., et al., (2005). Concentration and distribution of cobalt in higher plants: The use of micro-PIXE spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 231, 350–356.

    Article  CAS  Google Scholar 

  • Banerjee, T., Kumar, M., Mall, R. K., & Singh, R. S. (2017). Airing ‘clean air’in clean India mission. Journal of Environmental Science and Pollution Research, 24, 6399–6413.

    Article  CAS  Google Scholar 

  • Boonyapookana, B., Parkpian, P., Techapinyawat, S., et al., (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Public Health, 40, 117–137.

    Google Scholar 

  • Boxall, A. B. A., Fogg, L. A., Blackwell, P. A., et al., (2004). Veterinary medicines in the environment. Reviews of Environmental Contamination and Toxicology, 1–91.

  • Brain, R. A., Johnson, D. J., Richards, S. M., et al., (2004). Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environmental Toxicology and Chemistry: An International Journal, 23, 371–382.

    Article  CAS  Google Scholar 

  • Cambrollé, J., Mateos-Naranjo, E., Redondo-Gómez, S., et al., (2011). The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto-Odiel estuary (SW Spain). Hydrobiologia, 671, 95–103.

    Article  Google Scholar 

  • Cang, L., Zhou, D.-M., Wang, Q.-Y., & Fan, G.-P. (2012). Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochimica Acta, 86, 41–48.

    Article  CAS  Google Scholar 

  • Chandanshive, V. V., Kadam, S. K., Khandare, R. V., et al. (2018). In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere, 210, 968–976.

  • Chandra, R., & Yadav, S. (2011). Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using phragmites cummunis, typha angustifolia and cyperus esculentus. International Journal of Phytoremediation, 13, 580–591.

    Article  CAS  Google Scholar 

  • Chauhan, G., Pant, K. K., & Nigam, K. D. P. (2015). Chelation technology: a promising green approach for resource management and waste minimization. Environmental Science: Processes & Impacts, 17, 12–40.

    CAS  Google Scholar 

  • Chen, J.-C., Wang, K.-S., Chen, H., et al. (2010). Phytoremediation of Cr (III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresource Technology, 101, 3033–3039.

  • Chequer, F. M. D., De Oliveira, G. A. R., Ferraz, E. R. A., et al. (2013). Textile dyes: Dyeing process and environmental impact. Eco-friendly Textile Dyeing and Finishing, 6, 151–176.

  • Cho-Ruk, K., Kurukote, J., Supprung, P., & Vetayasuporn, S. (2006). Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology, 5, 1–4.

    CAS  Google Scholar 

  • Concas, S., Lattanzi, P., Bacchetta, G., et al. (2015). Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy metal-rich soils: Implications for phytostabilization. Water, Air, & Soil Pollution, 226, 1–15.

  • Cui, X., Mao, P., Sun, S., et al., (2021). Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Chemosphere, 283, 131067.

    Article  CAS  Google Scholar 

  • da Conceição Gomes, M. A., Hauser-Davis, R. A., de Souza, A. N., & Vitória, A. P. (2016). Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety, 134, 133–147.

    Article  Google Scholar 

  • Datta, R., Das, P., Smith, S., et al., (2013). Phytoremediation potential of vetiver grass Chrysopogon zizanioides (L.) for tetracycline. International Journal of Phytoremediation, 15, 343–351.

    Article  CAS  Google Scholar 

  • Davies, L. C., Carias, C. C., Novais, J. M., & Martins-Dias, S. (2005). Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecological Engineering, 25, 594–605.

    Article  Google Scholar 

  • Desore, A., & Narula, S. A. (2018). An overview on corporate response towards sustainability issues in textile industry. Environment, Development and Sustainability, 20, 1439–1459.

    Article  Google Scholar 

  • Dhankher, O. P., Pilon-Smits, E. A. H., Meagher, R. B., & Doty, S. (2012). Biotechnological approaches for phytoremediation. Plant biotechnology and agriculture, (pp. 309–328). Elsevier.

  • Dharni, S., Srivastava, A. K., Samad, A., & Patra, D. D. (2014). Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge. Chemosphere, 117, 433–439.

    Article  CAS  Google Scholar 

  • Diagboya, P. N., Mtunzi, F. M., Adebowale, K. O., & Olu-Owolabi, B. I. (2021). Assessment of the effects of soil organic matter and iron oxides on the individual sorption of two polycyclic aromatic hydrocarbons. Environmental Earth Sciences, 80, 1–12.

    Article  Google Scholar 

  • Diez, M. C. (2010). Biological aspects involved in the degradation of organic pollutants. Journal of Soil Science and Plant Nutrition, 10(3), 244–267.

    Article  Google Scholar 

  • Dominguez, M. T., Madrid, F., Marañón, T., & Murillo, J. M. (2009). Cadmium availability in soil and retention in oak roots: Potential for phytostabilization. Chemosphere, 76(4), 480–486.

    Article  CAS  Google Scholar 

  • Dordio, A. V., Duarte, C., Barreiros, M., et al., (2009). Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.-potential use for phytoremediation? Bioresource Technology, 100, 1156–1161.

    Article  CAS  Google Scholar 

  • Doty, S. L. (2008). Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 179, 318–333.

    Article  CAS  Google Scholar 

  • Du, L., & Liu, W. (2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development, 32, 309–327.

    Article  CAS  Google Scholar 

  • Ekanayake, E., & Manage, P. M. (2020). Green approach for decolorization and detoxification of textile dye-CI direct blue 201 using native bacterial strains. Environment and Natural Resources Journal, 18, 1–8.

    Article  Google Scholar 

  • Etim, E. E. (2012). Phytoremediation and its mechanisms: A review. International Journal of Environment and Bioenergy, 2(3), 120–136.

    Google Scholar 

  • Farraji, H., Zaman, N. Q., Tajuddin, R., & Faraji, H. (2016). Advantages and disadvantages of phytoremediation: A concise review. International Journal of Environmental Science and Technology, 2, 69–75.

    Google Scholar 

  • Ferraz, P., Fidalgo, F., Almeida, A., & Teixeira, J. (2012). Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiology and Biochemistry, 57, 254–260.

    Article  CAS  Google Scholar 

  • Ferreira, P. A. A., Lopes, G., Santana, N. A., et al. (2022). Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Zn-and Cd-contaminated soil. Chemosphere, 288, 132508.

  • Franks CG, others (2006) Phytoremediation of pharmaceuticals with Salix exigua. Lethbridge, Alta.: University of Lethbridge, Faculty of Arts and Science, 2006

  • Gaballah, M. S., Ismail, K., Aboagye, D., Ismail, M. M., Sobhi, M., & Stefanakis, A. I. (2021). Effect of design and operational parameters on nutrients and heavy metal removal in pilot floating treatment wetlands with Eichhornia Crassipes treating polluted lake water. Environmental Science and Pollution Research, 28(20), 25664–25678.

    Article  CAS  Google Scholar 

  • Gahlawat, S., & Gauba, P. (2016). Phytoremediation of aspirin and tetracycline by Brassica juncea. International Journal of Phytoremediation, 18, 929–935.

    Article  CAS  Google Scholar 

  • Gahlawat, S., Makhijani, M., Chauhan, K., et al. (2014). Accessing the phytoremediation potential of Cicer arietinum for aspirin. International Journal of Genetic Engineering and Biotechnology, 5, 161–168.

  • Gan, L., Wang, J., Xie, M., & Yang, B. (2022). Ecological risk and health risk analysis of soil potentially toxic elements from oil production plants in central China. Scientific Reports, 12(1), 1–10.

    Article  Google Scholar 

  • García-Sánchez, M., Košnář, Z., Mercl, F., et al. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174.

  • Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74, 21–31.

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK, others (2012) Phytoaccumulation potential and toxicity of arsenic ions by Eichhornia crassipes in hydroponic system. Journal of Bioremediation and Biodegradation 3:

  • Gong, Y., Zhou, X., Ma, X., & Chen, J. (2018). Sustainable removal of formaldehyde using controllable water hyacinth. Journal of Cleaner Production, 181, 1–7.

    Article  CAS  Google Scholar 

  • Gong, Y., Chen, J., & Pu, R. (2019). The enhanced removal and phytodegradation of sodium dodecyl sulfate (SDS) in wastewater using controllable water hyacinth. International Journal of Phytoremediation, 21(11), 1080–1089.

    Article  CAS  Google Scholar 

  • González, P. S., Capozucca, C. E., Tigier, H. A., et al., (2006). Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme and Microbial Technology, 39, 647–653.

  • Gorinova, N., Nedkovska, M., Todorovska, E., et al., (2007). Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Environmental Pollution, 145, 161–170.

    Article  CAS  Google Scholar 

  • Gu, X., Zhang, Q., Jia, Y., et al., (2022). Enhancement of the Cd phytoremediation efficiency of Festuca arundinacea by sonic seed treatment. Chemosphere, 287, 132158.

    Article  CAS  Google Scholar 

  • Gujarathi, N. P., Haney, B. J., & Linden, J. C. (2005a). Phytoremediation potential of Myriophyllum aquaticum and Pistia stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline, in aqueous wastewater systems. International Journal of Phytoremediation, 7, 99–112.

    Article  CAS  Google Scholar 

  • Gujarathi, N. P., Haney, B. J., Park, H. J., et al., (2005b). Hairy roots of Helianthus annuus: A model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnology Progress, 21, 775–780.

    Article  CAS  Google Scholar 

  • Harris, H. H., Pickering, I. J., & George, G. N. (2003). The chemical form of mercury in fish. Science, 301(5637), 1203.

    Article  CAS  Google Scholar 

  • Hasan, S. M. M., Akber, M. A., Bahar, M. M., et al. (2021). Chromium contamination from tanning industries and phytoremediation potential of native plants: A study of savar tannery industrial estate in Dhaka Bangladesh. Bulletin of Environmental Contamination and Toxicology, 1–9.

  • Hauptvogl, M., Kotrla, M., Prčík, M., Pauková, Ž., Kováčik, M., & Lošák, T. (2019). Phytoremediation potential of fast-growing energy plants: Challenges and perspectives–A review. Polish Journal of Environmental Studies, 29(1), 505–516.

    Article  Google Scholar 

  • He, Y., Langenhoff, A. A., Sutton, N. B., Rijnaarts, H. H., Blokland, M. H., Chen, F., et al. (2017). Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environmental Science & Technology, 51(8), 4576–4584.

    Article  CAS  Google Scholar 

  • Hoang, T. T. T., Tu, L. T. C., Le, N. P., & Dao, Q. P. (2013). A preliminary study on the phytoremediation of antibiotic contaminated sediment. International Journal of Phytoremediation, 15, 65–76.

    Article  Google Scholar 

  • Hovsepyan, A., & Greipsson, S. (2005). EDTA-enhanced phytoremediation of lead-contaminated soil by corn. Journal of Plant Nutrition, 28, 2037–2048.

    Article  CAS  Google Scholar 

  • Hussain, I., Rehman, K., Ashraf, M. A., et al. (2021). Effect of pharmaceutical effluents on growth, oxidative defense, secondary metabolism, and ion homeostasis in carrot. Dose-Response, 19, 1559325821998506.

  • January, M. C., Cutright, T. J., Van Keulen, H., & Wei, R. (2008). Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere, 70, 531–537.

    Article  CAS  Google Scholar 

  • Jayanthy, V., Geetha, R., Rajendran, R., et al. (2014). Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil. Saudi Journal of Biological Sciences, 21, 324–333.

  • Ji, P., Sun, T., Song, Y., et al. (2011). Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159, 762–768.

  • Joner, E., & Leyval, C. (2003). Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. Agronomie, 23, 495–502.

    Article  CAS  Google Scholar 

  • Kabra, A. N., Khandare, R. V., Kurade, M. B., & Govindwar, S. P. (2011). Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Journal of Environmental Science and Pollution Research, 18, 1360–1373.

    Article  CAS  Google Scholar 

  • Kabra, A. N., Khandare, R. V., Waghmode, T. R., & Govindwar, S. P. (2012). Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere, 87, 265–272.

    Article  CAS  Google Scholar 

  • Kagalkar, A. N., Jagtap, U. B., Jadhav, J. P., et al., (2009). Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource Technology, 100, 4104–4110.

    Article  CAS  Google Scholar 

  • Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Advances in Environmental, 100203.

  • Keeling, S. M., Stewart, R. B., Anderson, C. W. N., & Robinson, B. H. (2003). Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: Implications for polymetallic phytomining and phytoremediation. International Journal of Phytoremediation, 5, 235–244.

    Article  CAS  Google Scholar 

  • Khandare, R. V., Kabra, A. N., Kurade, M. B., & Govindwar, S. P. (2011). Phytoremediation potential of Portulaca grandiflora Hook.(Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172). Bioresource Technology, 102, 6774–6777.

    Article  CAS  Google Scholar 

  • Khellaf, N., & Zerdaoui, M. (2009). Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 100, 6137–6140.

    Article  CAS  Google Scholar 

  • Kim, K. J., Kil, M. J., Song, J. S., et al. (2008). Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. Journal of the American Society for Horticultural Science, 133, 521–526.

  • Kooh, M. R. R., Lim, L. B. L., Lim, L. H., & Dhari, M. K. (2016). Phytoremediation capability of Azolla pinnata for the removal of malachite green from aqueous solution. Journal of Microbiology and Biotechnology, 5, 10–17.

    Google Scholar 

  • Košnář, Z., Mercl, F., & Tlustoš, P. (2018). Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs–spiked soil. Ecotoxicology and Environmental, 153, 16–22.

    Article  Google Scholar 

  • Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16(2), 133–141.

    Article  Google Scholar 

  • Krippner, J., Brunn, H., Falk, S., Georgii, S., Schubert, S., & Stahl, T. (2014). Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere, 94, 85–90.

    Article  CAS  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17, 6–15.

    Article  CAS  Google Scholar 

  • Lai, H.-Y., & Chen, Z.-S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55(3), 421–430.

    Article  CAS  Google Scholar 

  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research & Innovation, 3, 275–290.

    Article  Google Scholar 

  • Li, W. C. (2014). Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environmental Pollution, 187, 193–201.

    Article  CAS  Google Scholar 

  • Li, F., Qiu, Y., Xu, X., et al. (2020). EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.). Ecotoxicology and Environmental Safety, 191, 110185.

  • Lim, J.-M., Jin, B., & Butcher, D. J. (2012). A comparison of electrical stimulation for electrodic and EDTA-enhanced phytoremediation of lead using Indian mustard (Brassica juncea). Bulletin of the Korean Chemical Society, 33, 2737–2740.

    Article  CAS  Google Scholar 

  • Liu, H., Meng, F., Tong, Y., & Chi, J. (2014). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecological Engineering, 73, 380–385.

    Article  Google Scholar 

  • Liu, W., Zhou, Q., Zhang, Z., et al. (2011). Evaluation of cadmium phytoremediation potential in Chinese cabbage cultivars. Journal of Agricultural and Food Chemistry, 59, 8324–8330.

  • Loades, K. W., Bengough, A. G., Bransby, M. F., & Hallett, P. D. (2010). Planting density influence on fibrous root reinforcement of soils. Ecological Engineering, 36, 276–284.

    Article  Google Scholar 

  • Lokhande, V. H., Kudale, S., Nikalje, G., et al. (2015). Hairy root induction and phytoremediation of textile dye, reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L. Biotechnology Reports, 8, 56–63.

  • Lotfy, S. M., & Mostafa, A. Z. (2014). Phytoremediation of contaminated soil with cobalt and chromium. Journal of Geochemical Exploration, 144, 367–373.

    Article  CAS  Google Scholar 

  • Lv, T., Zhang, Y., Casas, M. E., et al. (2016). Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere, 148, 459–466.

  • Ma, Y., Oliveira, R. S., Wu, L., Luo, Y., Rajkumar, M., Rocha, I., & Freitas, H. (2015). Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. Journal of Toxicology and Environmental Health, Part A, 78(13–14), 931–944.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14–25.

    Article  CAS  Google Scholar 

  • Maharjan, R. (2014). Phytoremediation of selected pharmaceuticals by and their phytotoxicity to aquatic plants. The University of Toledo.

    Google Scholar 

  • Mahajan, P., Kaushal, J. (2014). Degradation of congo red dye in aqueous solution by using phytoremediation potential of chara vulgaris.

  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121.

    Article  CAS  Google Scholar 

  • Mao, X., Han, F. X., Shao, X., et al. (2016). Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicology and Environmental Safety, 125, 16–24.

  • Marmiroli, N., Marmiroli, M., & Maestri, E. (2006). Phytoremediation and phytotechnologies: A review for the present and the future. Soil and Water Pollution Monitoring, Protection and Remediation, 403–416.

  • Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., et al. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63.

  • Marsidi, N., Nye, C. K., Abdullah, S. R. S., et al. (2016). Phytoremediation of naproxen in waste water using vetiver zizaniodes. Journal of Engineering Science and Technology, 11, 1086–1097.

  • Marsik, P., Podlipna, R., & Vanek, T. (2017). Study of praziquantel phytoremediation and transformation and its removal in constructed wetland. Journal of Hazardous Materials, 323, 394–399.

    Article  CAS  Google Scholar 

  • Masinire, F., Adenuga, D. O., Tichapondwa, S. M., & Chirwa, E. M. N. (2021). Phytoremediation of Cr (VI) in wastewater using the vetiver grass (Chrysopogon zizanioides). Minerals Engineering, 172, 107141.

    Article  CAS  Google Scholar 

  • Meng, L., Qiao, M., & Arp, H. P. H. (2011). Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono-and mixed cultures. Journal of Soils and Sediments, 11, 482–490.

    Article  CAS  Google Scholar 

  • Mengoni, A., Pini, F., & Bazzicalupo, M. (2011). The bacterial flora of the nickel-hyperaccumulator plant Alyssum bertolonii. In Biomanagement of metal-contaminated soils (pp. 167–181). Springer.

    Chapter  Google Scholar 

  • Mesjasz-Przybyłowicz, J., Nakonieczny, M., Paweł, M., Augustyniak, M., et al. (2004). Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia: Series Botanica, 46, 75–85.

  • Mitton, F. M., Miglioranza, K. S. B., Gonzalez, M., et al. (2014). Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecological Engineering, 71, 501–508.

  • Mokhtar, H., Morad, N., & Fizri, F. F. A. (2011). Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella Asiatica. International Journal of Environmental Science and Technology, 2, 205.

    Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2004). Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environmental Practice, 6, 165–175.

    Article  Google Scholar 

  • Moreno-Jiménez, E., Peñalosa, J. M., Esteban, E., & Bernal, M. P. (2009). Feasibility of arsenic phytostabilisation using Mediterranean shrubs: Impact of root mineralisation on As availability in soils. Journal of Environmental Monitoring, 11, 1375–1380.

    Article  Google Scholar 

  • Mosaddegh, M. H., Jafarian, A., Ghasemi, A., & Mosaddegh, A. (2014). Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants. Journal of Environmental Health Science & Engineering, 12, 1–7.

    Article  Google Scholar 

  • Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal enriched mine waste: A review. International Journal of Environmental Research, 4, 135–150.

    CAS  Google Scholar 

  • Muthunarayanan, V., Santhiya, M., Swabna, V., & Geetha, A. (2011). Phytodegradation of textile dyes by water hyacinth (Eichhornia crassipes) from aqueous dye solutions. International Journal of Environmental Science, 1, 1702–1717.

    CAS  Google Scholar 

  • Najeeb, U., Ahmad, W., Zia, M. H., et al. (2017). Enhancing the lead phytostabilization in wetland plant Juncus effusus L. through somaclonal manipulation and EDTA enrichment. Arabian Journal of Chemistry, 10, S3310–S3317.

  • Nguyen, B.-A. T., Chen, Q.-L., He, J.-Z., & Hu, H.-W. (2021). Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. Journal of Hazardous Materials, 127867.

  • Novakova, M., Mackova, M., Chrastilova, Z., et al. (2009). Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnology and Bioengineering, 102, 29–37.

  • Nwoko, C. O. (2010). Trends in phytoremediation of toxic elemental and organic pollutants. African Journal of Biotechnology, 9, 6010–6016.

    CAS  Google Scholar 

  • Ogugbue, C. J., Sawidis, T., & Oranusi, N. A. (2011). Evaluation of colour removal in synthetic saline wastewater containing azo dyes using an immobilized halotolerant cell system. Ecological Engineering, 37, 2056–2060.

    Article  Google Scholar 

  • Oladoye, P. O., Olowe, O. M., & Asemoloye, M. D. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288, 132555.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, & Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Patneedi, C. B., & Prasadu, K. D. (2015). Impact of pharmaceutical wastes on human life and environment. Rasayan Journal of Chemistry, 8, 67–70.

    CAS  Google Scholar 

  • Paulo, C., Pratas, J., & Rodrigues, N. (2006). Rhizofiltration of uranium from contaminated mine water. Metal Ions in Biology asnd Medicine, 9, 187–192.

    CAS  Google Scholar 

  • Pescatore, A., Grassi, C., Rizzo, A. M., et al. (2022). Effects of biochar on berseem clover (Trifolium alexandrinum L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere, 287, 131986.

  • Prajapati, S. K., Meravi, N., & Singh, S. (2012). Phytoremediation of chromium and cobalt using Pistia stratiotes: A sustainable approach. Proceedings of the International Academy of Ecology and Environmental Sciences, 2, 136.

    CAS  Google Scholar 

  • Qureshi, M. I., D’Amici, G. M., Fagioni, M., et al. (2010). Iron stabilizes thylakoid protein-pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. Journal of Plant Physiology, 167, 761–770.

  • Rajkumar, M., Ma, Y., & Freitas, H. (2013). Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Journal of Environmental Management, 128, 973–980.

    Article  CAS  Google Scholar 

  • Ramachandran, R., & Gnanadoss, J. J. (2013). Mycoremediation for the treatment of dye containing effluents. International Journal of Computing Algorithm, 2, 286–293.

    Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., et al. (2013). Potential of rose for phytostabilization of chromium contaminated soils. Indian Journal of Plant Physiology, 18, 381–383.

  • Rane, N. R., Chandanshive, V. V., Watharkar, A. D., et al. (2015). Phytoremediation of sulfonated Remazol Red dye and textile effluents by Alternanthera philoxeroides: An anatomical, enzymatic and pilot scale study. Water Research, 83, 271–281.

  • Rao, G., Huang, S., Ashraf, U., et al. (2019). Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L. Ecotoxicology and Environmental Safety, 185, 109659.

  • Rehman, K., Shahzad, T., Sahar, A., et al. (2018). Effect of reactive black 5 azo dye on soil processes related to C and N cycling. Peer J, 6, e4802.

  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem Chem & Sustain Energy & Mater, 1, 708–717.

    CAS  Google Scholar 

  • Ren, X., Zeng, G., Tang, L., et al. (2018). Sorption, transport and biodegradation-an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610, 1154–1163.

    Article  Google Scholar 

  • Rezania, S., Ponraj, M., Talaiekhozani, A., et al. (2015). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125–133.

    Article  CAS  Google Scholar 

  • Rizzi, L., Petruzzelli, G., Poggio, G., & Guidi, G. V. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57, 1039–1046.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., et al. (2000). Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant Soil, 227, 301–306.

  • Ryan, R. P., Germaine, K., Franks, A., et al. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278, 1–9.

    Article  CAS  Google Scholar 

  • Ryšlavá, H., Pomeislová, A., Pšondrová, Š, et al. (2015). Phytoremediation of carbamazepine and its metabolite 10, 11-epoxycarbamazepine by C 3 and C 4 plants. Environmental Science and Pollution Research, 22, 20271–20282.

    Article  Google Scholar 

  • Saleh, H. M. (2012). Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nuclear Engineering and Design, 242, 425–432.

    Article  CAS  Google Scholar 

  • Sánchez, V., López-Bellido, F. J., Rodrigo, M. A., & Rodríguez, L. (2019). Electrokinetic-assisted phytoremediation of atrazine: Differences between electrode and interelectrode soil sections. Separation and Purification Technology, 211, 19–27.

    Article  Google Scholar 

  • Saraswathi, V. S., Kamarudheen, N., BhaskaraRao, K. V., & Santhakumar, K. (2017). Phytoremediation of dyes using Lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains Pseudomonas aeruginosa. Journal of Photochemistry and Photobiology B: Biology, 168, 107–116.

    Article  Google Scholar 

  • Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments—A review. Frontiers in Environmental Science, 7, 66.

    Article  Google Scholar 

  • Shah, S. H. H., Wang, J., Hao, X., & Thomas, B. W. (2022). Modelling soil salinity effects on salt water uptake and crop growth using a modified denitrification-decomposition model: A phytoremediation approach. Journal of Environmental Management, 301, 113820.

    Article  Google Scholar 

  • Shakeel, W., Javaid, S., Anjum, S. M. M., et al. (2020). Time course evaluation of lacosamide alone.

  • Sharma, R., Kumar, R., Hajam, Y. A., & Rani, R. (2022). Role of biotechnology in phytoremediation (pp. 437–454). Phytoremediation. Elsevier.

    Book  Google Scholar 

  • Sharma, R., Saini, H., Paul, D. R., et al. (2021). Removal of organic dyes from wastewater using Eichhornia crassipes: A potential phytoremediation option. Environmental Science and Pollution Research, 28, 7116–7122.

    Article  CAS  Google Scholar 

  • Shiyab, S., Chen, J., Han, F. X., Monts, D. L., Matta, F. B., Gu, M., et al. (2009). Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environmental Toxicology: An International Journal, 24(5), 462–471.

    Article  CAS  Google Scholar 

  • Shrestha, P., Bellitürk, K., & Görres, J. H. (2019). Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. International Journal of Environmental Research and Public Health, 16(7), 1261.

    Article  CAS  Google Scholar 

  • Singh, S., Karwadiya, J., Srivastava, S., et al. (2022). Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecological Engineering, 175, 106476.

  • Smolińska, B., & Król, K. (2012). Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. Journal of Chemical Technology & Biotechnology, 87, 1360–1365.

    Article  Google Scholar 

  • Sun, Y. B., Sun, G. H., Zhou, Q. X., et al. (2011). Induced-phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with Marvel of Peru (Mirabilis jalapa L.). Plant, Soil and Environment, 57, 364–371.

  • Taghavi, S., Weyens, N., Vangronsveld, J., & van der Lelie, D. (2011). Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees (pp. 205–216). Endophytes of Forest Trees. Springer.

    Google Scholar 

  • Tananonchai, A., Sampanpanish, P., Chanpiwat, P., et al. (2019). Effect of EDTA and NTA on cadmium distribution and translocation in Pennisetum purpureum Schum cv Mott. Environmental Science and Pollution Research, 26, 9851–9860.

  • Tang, X., Pang, Y., Ji, P., et al. (2016). Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 125, 102–106.

  • Tomé, F. V., Rodriguez, P. B., & Lozano, J. C. (2008). Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Science of the Total Environment, 393, 351–357.

    Article  Google Scholar 

  • Turgut, C., Pepe, M. K., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154.

    Article  CAS  Google Scholar 

  • Üçüncü, E., Tunca, E., Fikirdeşici, Ş., Özkan, A. D., & Altındağ, A. (2013). Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor. Bulletin of Environmental Contamination and Toxicology, 91, 600–604.

    Article  Google Scholar 

  • Vafaei, F., Movafeghi, A., Khataee, A. R., et al. (2013). Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: Inducing antioxidant response in roots and leaves. Ecotoxicology and Environmental Safety, 93, 128–134.

    Article  CAS  Google Scholar 

  • Van Aken, B. (2008). Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnology, 26, 225–227.

    Article  Google Scholar 

  • Vandenhove, H. (2000). European sites contaminated by residues from the ore extracting and processing industries. In Restoration of environments with radioactive residues. Papers and discussions. Proceedings of an international symposium.

    Google Scholar 

  • Vandenhove, H., Zeevaert, T., Bousher, A., et al. (2002). Investigation of a possible basis for a common approach with regard to the restoration of areas affected by lasting radiation exposure as a result of past or old practice or work activity-CARE.

  • Vangronsveld, J., Ruttens, A., Mench, M., et al. (2007). In situ inactivation and phytoremediation of metal- and metalloid-contaminated soils: Field experiments. Bioremediation Contaminated Soils, 859–884.

  • Vázquez, S., Agha, R., Granado, A., et al. (2006). Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Pollution, 177, 349–365.

  • Vishnoi, S. R., & Srivastava, P. N. (2007). Phytoremediation-green for environmental clean. In: Proceedings of Taal 2007: The 12th World lake conference. p. 1021

  • Watharkar, A. D., & Jadhav, J. P. (2014). Detoxification and decolorization of a simulated textile dye mixture by phytoremediation using Petunia grandiflora and Gailardia grandiflora: A plant-plant consortial strategy. Ecotoxicology and Environmental Safety, 103, 1–8.

    Article  CAS  Google Scholar 

  • Watharkar, A. D., Khandare, R. V., Kamble, A. A., et al. (2013). Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G. Environmental Science and Pollution Research, 20, 939–949.

  • Willscher, S., Jablonski, L., Fona, Z., et al. (2017). Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy, 168, 153–158.

  • Wu, C., Spongberg, A. L., Witter, J. D., et al. (2010). Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environmental Science & Technology, 44, 6157–6161.

    Article  CAS  Google Scholar 

  • Wu, B., Luo, S., Luo, H., Huang, H., Xu, F., Feng, S., & Xu, H. (2022). Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Science of the Total Environment, 808, 151995.

    Article  CAS  Google Scholar 

  • Xiao, N., Liu, R., Jin, C., & Dai, Y. (2015). Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecological Engineering, 75, 384–391.

    Article  Google Scholar 

  • Xie, H., Ma, Y., Wang, Y., et al. (2021). Biological response and phytoremediation of perennial ryegrass to halogenated flame retardants and Cd in contaminated soils. Journal of Environmental Chemical Engineering, 9, 106526.

  • Xun, Y., Feng, L., Li, Y., & Dong, H. (2017). Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, 161–170.

    Article  CAS  Google Scholar 

  • Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecological Engineering, 120, 274–298.

  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.

    Article  Google Scholar 

  • Yan, L., Van Le, Q., Sonne, C., Yang, Y., Yang, H., Gu, H., Ma, N. L., Lam, S. S., & Peng, W. (2021). Phytoremediation of radionuclides in soil, sediments and water. Journal of Hazardous Materials, 407, 124771.

    Article  CAS  Google Scholar 

  • Yang, J., Gu, Y., Chen, Z., et al. (2021). Colonization and performance of a pyrene-degrading bacterium Mycolicibacterium sp. Pyr9 on root surfaces of white clover. Chemosphere, 263, 127918.

  • Yang, Y., Xiao, C., Wang, F., et al. (2022). Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes. Journal of Hazardous Materials, 423, 127183.

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    Article  CAS  Google Scholar 

  • Yuan, L., Guo, P., Guo, S., et al. (2021). Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environmental Research, 198, 111290.

  • Zacchini, M., Pietrini, F., Mugnozza, G. S., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution, 197(1), 23–34.

    Article  CAS  Google Scholar 

  • Zeng, G., Wan, J., Huang, D., et al. (2017). Precipitation, adsorption and rhizosphere effect: The mechanisms for phosphate-induced Pb immobilization in soils—a review. Journal of Hazardous Materials, 339, 354–367.

  • Zhang, D., Xiang, T., Peihan, L., & Bao, L. (2011). Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde. Journal of Genetics and Molecular Biology, 34, 634–639.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., Gersberg, R. M., Hua, T., Zhu, J., Goyal, M. K., Ng, W. J., & Tan, S. K. (2013). Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environmental Pollution, 181, 98–106.

    Article  CAS  Google Scholar 

  • Zhang, J., Cao, X., Yao, Z., Lin, Q., Yan, B., Cui, X., et al. (2021). Phytoremediation of Cd- contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis. Journal of Hazardous Materials, 419, 126489.

    Article  CAS  Google Scholar 

  • Zhang, J., Fei, L., Dong, Q., et al. (2022). Cadmium binding during leaf senescence in Festuca arundinacea: Promotion phytoextraction efficiency by harvesting dead leaves. Chemosphere, 289, 133253.

  • Zhang, Y., Lv, T., Carvalho, P. N., et al. (2016). Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: Plant uptake and microbial degradation. Environmental Science and Pollution Research, 23, 2890–2898.

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37–43.

    Article  CAS  Google Scholar 

  • Zhao, H., Guan, Y., Zhang, G., et al. (2013). Uptake of perfluorooctane sulfonate (PFOS) by wheat (Triticum aestivum L.) plant. Chemosphere, 91, 139–144.

  • Zhao, H.-Y., Lin, L.-J., Yan, Q.-L., et al. (2011). Effects of EDTA and DTPA on lead and zinc accumulation of ryegrass. Journal of Environmental Protection, 2, 932.

  • Zhao, X., Liu, W., Cai, Z., et al. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

  • Zhuang, P., Wensheng, S. H. U., Zhian, L. I., Bin, L., Jintian, L. I., & Jingsong, S. (2009). Removal of metals by sorghum plants from contaminated land. Journal of Environmental Sciences, 21(10), 1432–1437.

    Article  CAS  Google Scholar 

  • Zhou, Q., Sun, F., & Liu, R. (2005). Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environment International, 31, 835–839.

    Article  Google Scholar 

  • Zou, T., Li, T., Zhang, X., et al. (2011). Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. Journal of Hazardous Materials, 186, 683–689.

  • Zou, T., Li, T., Zhang, X., et al. (2012). Lead accumulation and phytostabilization potential of dominant plant species growing in a lead--zinc mine tailing. Environmental Earth Sciences, 65, 621–630.

  • Zurayk, R., Sukkariyah, B., Baalbaki, R., & Abi Ghanem, D. (2002). Ni phytoaccumulation in Mentha aquatica L. and Mentha sylvestris L. Water, Air, & Soil Pollution, 139, 355–364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (41907314) and the 519 Natural Science Research Project of Education Department of Anhui Province (KJ2021A0136).

Author information

Authors and Affiliations

Authors

Contributions

Abdul Latif, Aown Abbas, and Javed Iqbal: writing—original draft; Waleed Asghar: writing—review and editing; Rehmat Ullah and Muhammad Bilal: writing—review and editing; Muhammad Azeem: writing—review and editing; Muhammad Arsalan: writing—review and editing; Madeeha Khan: writing—review and editing; Rizwan Latif: writing—review and editing; Muhammad Ehsan: writing—review and editing; Asad Abbas: writing—review and editing; Saqib Bashir, Safdar Bashir, Khalid Saifullah Sun Kai Wu kang, and Farhat Bashir: writing—review and editing; Zhiming Chen: supervision and editing. All the authors have participated equally for this manuscript.

Corresponding authors

Correspondence to Abdul Latif, Muhammad Azeem or Zhiming Chen.

Ethics declarations

Ethical Approval

All the authors approved to submit this manuscript in Water, Air, & Soil Pollution.

Consent to Participate

All the authors have participated equally for this manuscript.

Consent for Publication

All the authors are agreed to to publish this manuscript in Water, Air, & Soil Pollution.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• For environmental pollutants cleaning from contaminated sites, phytoremediation is a viable and ecologically friendly technique.

• Various plants could be employed in phytoremediation to lower the pollutants.

• Plant species use distinct phytomechanisms to phytoremediate various contaminants.

• The efficiency of phytoremediation is affected by various factors.

• Future prospects and merits/demerits of phytoremediation are supported by recent research.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, A., Abbas, A., Iqbal, J. et al. Remediation of Environmental Contaminants Through Phytotechnology. Water Air Soil Pollut 234, 139 (2023). https://doi.org/10.1007/s11270-023-06112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06112-2

Keywords

Navigation