Skip to main content
Log in

Titanium Dioxide Nanoparticles Induce Root Growth Inhibition in Soybean Due to Physical Damages

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticles (NPs) are the most widely released nanomaterials in the environment and are considered an emerging contaminant. Although the phytotoxicity mechanism of TiO2 NPs on plants involves the elevated generation of reactive oxygen species (ROS), it is still not well established in soybean. Herein, we evaluated the effects of 250–1000 mg L−1 TiO2 NPs on seed germination, growth, content of ROS, lipid peroxidation, and activity of antioxidant enzymes in roots of soybean plants. Our data revealed that up to 1000 mg L−1 TiO2 NPs did not affect soybean seed germination. Transmission electron microscopy images and determinations of zeta potential and hydrodynamic diameter of a suspension of TiO2 NPs demonstrated that they form aggregates, favoring their adsorption to the root surface with consequent physical damage. The main deleterious effects noted on roots were reduced cell viability, reduced root hair number, striated aspect of root apexes, and reduced fresh and dry weights of roots. In disagreement with other studies, plant exposure to TiO2 NPs reduced the level of total ROS and lipid peroxidation, probably due to increased superoxide dismutase (SOD) activity. Altogether, our data suggest that the toxicity mechanism of TiO2 NPs on soybean roots involves physical damage resulting from their adsorption to the root surface, but not the generation of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Andersen, C. P., King, G., Plocher, M., Storm, M., Pokhrel, L. R., Johnson, M. G., & Rygiewicz, P. T. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry, 35(9), 2223–2229. https://doi.org/10.1002/etc.3374.

    Article  CAS  Google Scholar 

  • Avellan, A., Schwab, F., Masion, A., Chaurand, P., Borschneck, D., Vidal, V., & Santaella, C. (2017). Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science and Technology, 51(15), 8682–8691. https://doi.org/10.1021/acs.est.7b01133.

    Article  CAS  Google Scholar 

  • Azevedo, R. A., Alas, R. M., Smith, R. J., & Lea, P. J. (1998). Response of antioxidante enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and catalase-deficient mutant of barley. Physiologia Plantarum, 104, 280–292. https://doi.org/10.1034/j.1399-3054.1998.1040217.x.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  Google Scholar 

  • Boveris, A., Cadenas, E., Chance, B. (1980). Low level chemiluminescence of the lipoxygenase reaction. Photobiochemistry and Photobiophysics, 1, 175–182.

  • Castiglione, M. R., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13(6), 2443–2449. https://doi.org/10.1007/s11051-010-0135-8.

    Article  CAS  Google Scholar 

  • Coman, V., Oprea, I., Leopold, L. F., Vodnar, D. C., & Coman, C. (2019). Soybean interaction with engineered nanomaterials: A literature review of recent data. Nanomaterials, 9(9), 1–25. https://doi.org/10.3390/nano9091248.

    Article  CAS  Google Scholar 

  • Cox, A., Venkatachalam, P., Sahi, S., & Sharma, N. (2016). Silver and titanium dioxide nanoparticle toxicity in plants : A review of current research. Plant Physiology et Biochemistry, 107, 147–163. https://doi.org/10.1016/j.plaphy.2016.05.022.

    Article  CAS  Google Scholar 

  • Cunha Lopes, T. L., de Cássia Siqueira-Soares, R., Gonçalves de Almeida, G. H., Romano de Melo, G. S., Barreto, G. E., de Oliveira, D. M., et al. (2018). Lignin-induced growth inhibition in soybean exposed to iron oxide nanoparticles. Chemosphere, 211, 226–234. https://doi.org/10.1016/j.chemosphere.2018.07.143.

    Article  CAS  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 1–13. https://doi.org/10.3389/fenvs.2014.00053.

    Article  CAS  Google Scholar 

  • Dayem, A. A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G., et al. (2017). The role of reactive oxygen species (ros) in the biological activities of metallic nanoparticles. International Journal of Molecular Science, 18(1), 120. https://doi.org/10.3390/ijms18010120.

    Article  CAS  Google Scholar 

  • Devi, R. S., & Prasad, M. N. V. (1996). Ferulic acid mediated changes in oxidative enzymes of maize seedlings: Implications in growth. Biologia Plantarum, 38(3), 387–395. https://doi.org/10.1007/BF02896668.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., et al. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9). https://doi.org/10.1007/s11051-012-1125-9.

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-Induced Phenylpropanoid Metabolism. The Plant Cell, 7(7), 1085. https://doi.org/10.2307/3870059.

    Article  CAS  Google Scholar 

  • Dos Santos, W. D., Ferrarese, M. L. L., Nakamura, C. V., Mourão, K. S. M., Mangolin, C. A., & Ferrarese-Filho, O. (2008). Soybean (Glycine max) root lignification induced by ferulic acid. The possible mode of action. Journal of Chemical Ecology, 34(9), 1230–1241. https://doi.org/10.1007/s10886-008-9522-3.

    Article  CAS  Google Scholar 

  • Facundo, H. T. F., Brandt, C. T., Owen, J. S., & Lima, V. L. M. (2004). Elevated levels of erythrocyte-conjugated dienes indicate increased lipid peroxidation in schistosomiasis mansoni patients. Brazilian Journal of Medical and Biological Research, 37(7), 957–962. https://doi.org/10.1590/S0100-879X2004000700003.

    Article  CAS  Google Scholar 

  • Feizi, H., Kamali, M., Jafari, L., & Rezvani Moghaddam, P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91(4), 506–511. https://doi.org/10.1016/j.chemosphere.2012.12.012.

    Article  CAS  Google Scholar 

  • Félix, R., Valentão, P., Andrade, P. B., Félix, C., Novais, S. C., & Lemos, M. F. L. (2020). Evaluating the in vitro potential of natural extracts to protect lipids from oxidative damage. Antioxidants, 9(3), 1–29. https://doi.org/10.3390/antiox9030231.

    Article  CAS  Google Scholar 

  • Ferreira, A. G., Borguetti, F. (2004). Germinação: do básico ao aplicado. Porto Alegre, Artmed.

  • Foltête, A. S., Masfaraud, J. F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., et al. (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10), 2515–2522. https://doi.org/10.1016/j.envpol.2011.06.020.

    Article  CAS  Google Scholar 

  • Frazier, T. P., Burklew, C. E., & Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional and Integrative Genomics, 14(1), 75–83. https://doi.org/10.1007/s10142-013-0341-4.

    Article  CAS  Google Scholar 

  • Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75. https://doi.org/10.1016/j.jfda.2014.01.005.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases occurrence in higher plants. Plant Physiology, 59, 309–314. https://doi.org/10.1104/pp.59.2.309.

    Article  CAS  Google Scholar 

  • Gutteridge, J. M. C. (1995). Lipid and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41(12), 1819–1828.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  CAS  Google Scholar 

  • Heringa, M. B., Geraets, L., van Eijkeren, J. C. H., Vandebriel, R. J., de Jong, W. H., & Oomen, A. G. (2016). Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology, 10(10), 1515–1525. https://doi.org/10.1080/17435390.2016.1238113.

    Article  CAS  Google Scholar 

  • IARC. (2010). Carbon black, titanium dioxide, and talc. Lyon.

  • Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In R. Sunkar (Ed.), Plant stress tolerance: Methods in molecular biology (pp. 291–297). Springer. https://doi.org/10.1007/978-1-60761-702-0.

  • Katiyar, P., Yadu, B., Korram, J., Satnami, M. L., Kumar, M., & Keshaykant, S. (2020). Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. Journal of Environmental Sciences, 92, 18–27. https://doi.org/10.1016/j.jes.2020.02.013.

    Article  Google Scholar 

  • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6). https://doi.org/10.1007/s11051-013-1692-4.

  • Kořenková, L., Šebesta, M., Urík, M., Kolenčík, M., Kratošová, G., Bujdoš, M., et al. (2017). Physiological response of culture media-grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica, 67(4), 285–291. https://doi.org/10.1080/09064710.2016.1267255.

    Article  CAS  Google Scholar 

  • Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., et al. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431, 197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073.

    Article  CAS  Google Scholar 

  • Laware, S. L., & Raskar, S. (2014). Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3, 749–760.

    CAS  Google Scholar 

  • Li, J., Hu, J., Ma, C., Wang, Y., Wu, C., Huang, J., & Xing, B. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 159, 326–334. https://doi.org/10.1016/j.chemosphere.2016.05.083.

    Article  CAS  Google Scholar 

  • Lu, C. M., Zhang, C. Y., Wu, J. Q., & Tao, M. X. (2002). Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.

    CAS  Google Scholar 

  • Marslin, G., Sheeba, C. J., & Franklin, G. (2017). Nanoparticles alter secondary metabolism in plants via ros burst. Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.00832.

    Article  Google Scholar 

  • Martínez-Fernández, D., Barroso, D., & Komárek, M. (2016). Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environmental Science and Pollution Research, 23(2), 1732–1741. https://doi.org/10.1007/s11356-015-5423-5.

    Article  CAS  Google Scholar 

  • Mattiello, A., Lizzi, D., & Marchiol, L. (2018). Influence of titanium dioxide nanoparticles (nTiO2) on crop plants: A systematic overview. In D. K. Tripathi, P. Ahmad, S. Sharma, D. K. Chauhan, & N. K. Dubey (Eds.), Nanomaterials in Plants, Algae, and Microorganisms (pp. 277–296). Elsevier. https://doi.org/10.1016/B978-0-12-811487-2.00012-8.

  • Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.164376.

    Article  CAS  Google Scholar 

  • Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science and Technology, 46(17), 9224–9239. https://doi.org/10.1021/es202995d.

    Article  CAS  Google Scholar 

  • Mirzajani, F., Askari, H., Hamzelou, S., Schober, Y., Römpp, A., Ghassempour, A., & Spengler, B. (2014). Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicology and Environmental Safety, 108, 335–339. https://doi.org/10.1016/j.ecoenv.2014.07.013.

    Article  CAS  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Foyer, C. H., & Grace, S. (2000). Peroxide processing in photosynthesis: Antioxidant coupling and redox signalling. In Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2000.0707.

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1), 5–22. https://doi.org/10.1016/j.envpol.2007.06.006.

    Article  CAS  Google Scholar 

  • Pacheco, I., & Buzea, C. (2018). Nanoparticle uptake by plants: Beneficial or detrimental. In M. Faisal, Q. Saquib, A. Alatar, & A. Al-Khedhairy (Eds.), Phytotoxicity of nanoparticles (pp. 1–61). Cham: Springer. https://doi.org/10.1007/978-3-319-76708-6_1.

    Chapter  Google Scholar 

  • Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P. T., Raichur, A. M., et al. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One, 9(2). https://doi.org/10.1371/journal.pone.0087789.

  • Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., & Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochemistry & Analytical Biochemistry, 6(1), 1000308. https://doi.org/10.4172/2161-1009.1000308.

    Article  CAS  Google Scholar 

  • Pergo, E. M., & Ishii-Iwamoto, E. L. (2011). Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species Ipomoea triloba L. and the responses to allelochemicals. Journal of Chemical Ecology, 37(5), 500–513. https://doi.org/10.1007/s10886-011-9945-0.

    Article  CAS  Google Scholar 

  • Raliya, R., Franke, C., Chavalmane, S., Nair, R., & Reed, N. (2016). Quantitative understanding of nanoparticle uptake in watermelon plants, 7, 1–10. https://doi.org/10.3389/fpls.2016.01288.

  • Ramesh, M., Palanisamy, K., & Kumar Sharma, N. (2014). Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. Journal of Global Biosciences ISSN, 3(2), 2320–1355.

    Google Scholar 

  • Sergiev, V., Alexieva, E., & Karanov, E. (1997). Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus De l’Academie Bulgare Des Sciences, 51, 121–124.

    Google Scholar 

  • Servin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., Diaz, B. C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2012). Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science and Technology, 46(14), 7637–7643. https://doi.org/10.1021/es300955b.

    Article  CAS  Google Scholar 

  • Servin, A. D., Morales, M. I., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., et al. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science and Technology, 47(20), 11592–11598. https://doi.org/10.1021/es403368j.

    Article  CAS  Google Scholar 

  • Soares, A. R., Ferrarese, M. D. L. L., Siqueira, R. D. C., Böhm, F. M. L. Z., & Ferrarese-Filho, O. (2007). L-DOPA increases lignification associated with Glycine max root growth-inhibition. Journal of Chemical Ecology, 33(2), 265–275. https://doi.org/10.1007/s10886-006-9227-4.

    Article  CAS  Google Scholar 

  • Soares, A. R., de Ferrarese, M. L. L., de Siqueira-Soares, R. C., Marchiosi, R., Finger-Teixeira, A., & Ferrarese-Filho, O. (2011). The allelochemical L-dopa increases melanin production and reduces reactive oxygen species in soybean roots. Journal of Chemical Ecology, 37(8), 891–898. https://doi.org/10.1007/s10886-011-9988-2.

    Article  CAS  Google Scholar 

  • Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C., & Ma, H. (2012). Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environmental Toxicology and Chemistry, 31(9), 2147–2152. https://doi.org/10.1002/etc.1933.

    Article  CAS  Google Scholar 

  • Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. (2013a). Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93, 60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033.

    Article  CAS  Google Scholar 

  • Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., & Lee, E. J. (2013b). Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biological Trace Element Research, 155(1), 93–103. https://doi.org/10.1007/s12011-013-9765-x.

    Article  CAS  Google Scholar 

  • Tománková, K., Luhová, L., Petřivalský, M., Peč, P., & Lebeda, A. (2006). Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiological and Molecular Plant Pathology, 68(1–3), 22–32. https://doi.org/10.1016/j.pmpp.2006.05.005.

    Article  CAS  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., et al. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 110, 167–177. https://doi.org/10.1016/j.plaphy.2016.06.015.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhu, X., Lao, Y., Lv, X., Tao, Y., Huang, B., et al. (2016). TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Science of the Total Environment, 565, 818–826. https://doi.org/10.1016/j.scitotenv.2016.03.164.

    Article  CAS  Google Scholar 

  • Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179–190. https://doi.org/10.1385/BTER:110:2:179.

    Article  CAS  Google Scholar 

  • Zhao, L., Peng, B., Hernandez-Viezcas, J. A., Rico, C., Sun, Y., Peralta-Videa, J. R., et al. (2012). Stress response and tolerance of Zea mays to CeO2 nanoparticles: Cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano, 6(11), 9615–9622. https://doi.org/10.1021/nn302975u.

    Article  CAS  Google Scholar 

  • Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–91. https://doi.org/10.1385/bter:104:1:083.

    Article  CAS  Google Scholar 

  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6), 713–717. https://doi.org/10.1039/b805998e.

    Article  CAS  Google Scholar 

  • Ziental, D., Czarczynska-Golinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Golinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials, 10, 387. https://doi.org/10.3390/nano10020387.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rogério Marchiosi and Osvaldo Ferrarese-Filho are research fellows of National Council for Scientific and Technological Development (CNPq). Gabriele Sauthier Romano de Melo was the recipient of a CNPq fellowship. The authors thank César Armando Contreras Lancheros by the aid provided in the microscopy analyzes.

Funding

This work was funded by grants from the National Council for Scientific and Technological Development – CNPq (no. 407791/2018-3).

Author information

Authors and Affiliations

Authors

Contributions

Rogério Marchiosi and Osvaldo Ferrarese-Filho designed the study, analyzed data, and wrote the manuscript text. Gabriele Sauthier Romano de Melo performed most experiments. Marcela de Paiva Foletto-Felipe helped in microscopy analysis. Renato Polimeni Constantin and Josielle Abrahão helped in the determination of enzyme activity and quantification of ROS. Wanderley Dantas dos Santos and Rodrigo Polimeni Constantin helped design the study and analyzed the data. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Rogério Marchiosi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, G.S.R., Constantin, R.P., Abrahão, J. et al. Titanium Dioxide Nanoparticles Induce Root Growth Inhibition in Soybean Due to Physical Damages. Water Air Soil Pollut 232, 25 (2021). https://doi.org/10.1007/s11270-020-04955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04955-7

Keywords

Navigation