Skip to main content
Log in

Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Ferulic acid, in the form of feruloyl CoA, occupies a central position as an intermediate in the phenylpropanoid pathway. Due to the allelopathic function, its effects were tested on root growth, H2O2 and lignin contents, and activities of cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) and peroxidase (POD, EC 1.11.1.7) from soybean (Glycine max (L.) Merr.) root seedlings. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 1.0 mM ferulic acid in a growth chamber (25°C, 12/12 hr light/dark photoperiod, irradiance of 280 μmol m−2 s−1) for 24 or 48 hr. Exogenously supplied ferulic acid induced premature cessation of root growth, with disintegration of the root cap, compression of cells in the quiescent center, increase of the vascular cylinder diameter, and earlier lignification of the metaxylem. Moreover, the allelochemical decreased CAD activity and H2O2 level and increased the anionic isoform PODa5 activity and lignin content. The lignin monomer composition of ferulic acid-exposed roots revealed a significant increase of guaiacyl (G) units. When applied jointly with piperonylic acid (an inhibitor of the cinnamate 4-hydroxylase, C4H), ferulic acid increased lignin content. By contrast, the application of 3,4-(methylenedioxy) cinnamic acid (an inhibitor of the 4-coumarate:CoA ligase, 4CL) with ferulic acid did not. Taken together, these results suggest that ferulic acid may be channeled into the phenylpropanoid pathway (by the 4CL reaction) and, further, may increase the lignin monomer amount solidifying the cell wall and restricting the root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baleroni, C. R. S., Ferrarese, M. L. L., Braccini, A. L., Scapim, C. A., and Ferrarese-Filho, O. 2000. Effects of ferulic and p-coumaric acids on canola (Brassica napus L. cv. Hyola 401) seed germination. Seed Sci. Technol. 28:201–207.

    Google Scholar 

  • Baziramakenga, R., Leroux, G. D., and Simard, R. R. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21:1271–1285.

    Article  CAS  Google Scholar 

  • Baziramakenga, R., Leroux, G. D., and Simard, R. R. 1997. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Can. J. Bot. 75:445–450.

    CAS  Google Scholar 

  • Berlyn, G. P., and Miksche, J. P. 1976. Botanical microtechnique and cytochemistry. The Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Burgos, N. R., Talbert, R. E., Kim, K. S., and Kuk, Y. I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemical from rye (Secale cereale). J. Chem. Ecol. 30:671–689.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., and McClure, J. W. 2000. Altered lignin composition in phenylalanine ammonia-lyase-inhibited radish seedlings: implications for seed-derived sinapoyl esters as lignin precursors. Phytochemistry. 53:365–370.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Reddy, M. S. S., Temple, S., Jackson, L., Shadle, G., and Dixon, R. A. 2006. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J. 48:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Chon, S.-U., Choi, S.-K., Jung, S., Jang, H.-G., Pyo, B.-S., and Kim, S.-M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection. 21:1077–1082.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Bauw, G., Welinder, K. G., Van Montagu, M., and Boerjan, W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 118:125–135.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ortega, R., Anaya, A. L., Hernández-Bautista, B. E., and Laguna-Hernández, G. 1998. Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J. Chem. Ecol. 24:2039–2057.

    Article  CAS  Google Scholar 

  • Donaldson, L. A. 2001. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry. 57:859–876.

    Article  PubMed  CAS  Google Scholar 

  • de Ascensao, A. R. F. D. C., and Dubery, I. A. 2003. Soluble and wall-bound phenolics and phenolics polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry. 63:679–686.

    Article  PubMed  CAS  Google Scholar 

  • dos Santos, W. D., Ferrarese, M. L. L., Finger, A., Teixeira, A. C. N., and Ferrarese-Filho, O. 2004. Lignification and related enzymes in soybean root growth-inhibition by ferulic acid. J. Chem. Ecol. 30:1199–1208.

    Article  Google Scholar 

  • dos Santos, W. D., Ferrarese, M. L. L., and Ferrarese-Filho, O. 2006. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase in soybean roots. Plant Physiol. Biochem. 44:511–515.

    Article  PubMed  CAS  Google Scholar 

  • Einhellig, F. A. 1995. Characterization of the mechanisms of allelopathy. Modeling and experimental approaches, pppp. 132–141, in H. H. Cheng, Inderjit, and K. M. M. Dakshini (eds.). Allelopathy, Organisms, Processes and ApplicationsAmerican Chemical Society, Washington, DC.

    Google Scholar 

  • Ferrarese, M. L. L., Souza, N. E., Rodrigues, J. D., and Ferrarese-Filho, O. 2001. Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiol. Plant. 23:421–427.

    Article  CAS  Google Scholar 

  • Ferrarese, M. L. L., Zottis, A., and Ferrarese-Filho, O. 2002. Protein-free lignin quantification in soybean (Glycine max) roots. Biologia. 57:541–543.

    CAS  Google Scholar 

  • Gerrits, P. O. 1991. The Application of Glycol Methacrylate in Histotechnology: Some Fundamental Principles. Department of Anatomy and Embryology State University Groningen, Netherlands.

    Google Scholar 

  • Hamada, K., Ysutsumi, Y., and Nishida, T. 2003. Treatment of poplar callus with ferulic and sinapic acids II. Effects on related monolignol biosynthetic enzyme activities. J. Wood Sci. 49:366–370.

    Article  CAS  Google Scholar 

  • Ho, L. C. M. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:355–378.

    Article  CAS  Google Scholar 

  • Hsu, Y. T., and Kao, C. H. 2007. Heat shock-mediated H2O2 accumulation and protection against CD toxicity in rice seedlings. Plant Soil. 300:137–147.

    Article  CAS  Google Scholar 

  • Iiyama, K., Lam, T. B. T., and Stone, B. A. 1990. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry. 29:733–737.

    Article  CAS  Google Scholar 

  • Inderjit, and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, W. A. 1962. Botanical histochemistry, principles and practice. W. H. Freeman, San Francisco.

    Google Scholar 

  • Johansen, D. A. 1940. Plant microtechnique. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Kaur, H., Inderjit, and Kaushik, S. 2005. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol. Biochem. 43:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Ralph, J., Yahiaoui, N., Pean, M., and Boudet, A. M. 2000. Cross-coupling of hydroxycinnamyl aldehydes into lignins. Organic. Lett. 2:2197–2200.

    Article  CAS  Google Scholar 

  • Lam, T. B. T., Kadoya, K., and Iiyama, K. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry. 57:987–992.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Cheng, X. F., Leshkevich, J., Umezawa, T., and Harding, S. A. 2001. The last step of syringyl monolignols biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell. 13:1567–1585.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D. L., and Lovett, J. V. 1993. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 19:2231–2244.

    Article  CAS  Google Scholar 

  • Mangolin, C. A., Prioli, A. J., and Machado, M. F. P. S. 1994. Isozyme patterns in callus cultures and in plants regenerated from calli of Cereus peruvianus (cactaceae). Biochem. Gen. 32:237–247.

    Article  CAS  Google Scholar 

  • O’Brien, T. P., Feder, N., and MCcully, M. E. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma. 59:368–373.

    Article  CAS  Google Scholar 

  • Passardi, F., Cosio, C., Penel, C., and Dunand, C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell. Rep. 24:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, A. J., Vidigal-Filho, P. S., Lapenta, A. S., and Machado, M. F. P. S. 2001. Differential esterase expression in leaves of Manihot esculenta Crantz infected with Xanthomonas axonopodis pv. manihotis. Biochem. Genet. 39:289–296.

    Article  PubMed  CAS  Google Scholar 

  • Politycka, B. 1996. Peroxidase activity and peroxidation lipidic in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol. Plant. 18:365–370.

    CAS  Google Scholar 

  • Ros Barceló, A., Gómez Ros, L. V., Gabaldó, N. C., López-Serrano, M., Pomar, F., Carrión, J. S., and Pedreno, M. A. 2004. Basic peroxidases: the gateway from lignin evolution? Phytochem. Rev. 3:61–78.

    Article  Google Scholar 

  • Sánchez, M., Peña, M. J., Revilla, G., and Zarra, I. 1996. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol. 111:941–946.

    PubMed  Google Scholar 

  • Schoch, G. A., Nikov, G. N., Alworth, W. L., and Werck-Reichhart, D. 2002. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol. 130:1022–1031.

    Article  PubMed  CAS  Google Scholar 

  • Shann, J. R., and Blum, U. 1987a. The uptake of ferulic acid and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry. 26:2959–2964.

    Article  CAS  Google Scholar 

  • Shann, J. R., and Blum, U. 1987b. The utilization of exogenously applied ferulic acid in lignin biosynthesis. Phytochemistry. 26:2977–2982.

    Article  CAS  Google Scholar 

  • Wallace, G., and Fry, S. C. 1999. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry. 52:769–773.

    Article  CAS  Google Scholar 

  • Weir, T. L., Park, S. W., and Vivanco, J. M. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7:472–479.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681–692.

    PubMed  CAS  Google Scholar 

  • Yamauchi, K., and Fukushima, K. 2004. The regulation from guaiacyl to syringyl lignin in the differentiating xylem of Robinia pseudacacia. C. R. Biologies. 327:791–797.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). O. Ferrarese-Filho and M.L.L. Ferrarese are research fellows of CNPq. W.D. dos Santos is the recipient of a CNPq fellowship. The authors thank Dr. Wanderley de Souza and Maria de Fátima P. S. Machado for cooperation in extending instrumental facilities. The authors thank Aparecida M.D. Ramos and Gisele A. Bubna for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ferrarese-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, W.D., Ferrarese, M.L.L., Nakamura, C.V. et al. Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action. J Chem Ecol 34, 1230–1241 (2008). https://doi.org/10.1007/s10886-008-9522-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9522-3

Keywords

Navigation