Skip to main content

Advertisement

Log in

Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cross-linking of polymer hydrogels can be achieved by exposing the polymer to gamma radiation that induces production of polymer chain radicals resulting in cross-linking of chains. The present study was focused on fabrication of hydrogel by gamma irradiation for immobilization of bacterial cells. Hydrogels were prepared using 30 and 40% acrylamide at gamma irradiation dose of 5 kGy. Five bacterial strains BR-6, BR-14, BR-18, BR-21, and BR-26 screened for resistance to strontium were immobilized in hydrogels and evaluated for the bioremoval of strontium. Strontium content for different strains was 4.21–4.68 μg/ml after 3 days in the presence of free cells grown in 5 μg/ml strontium, while for immobilized cells, the strontium content was 3.35–3.81 μg/ml (30% acrylamide gel) and 3.46–3.99 μg/ml (40% acrylamide gel). After 10 days of incubation, the strontium content was reduced to 0.94–1.26 μg/ml (30% acrylamide gel) and 0.82–1.07 μg/ml (40% acrylamide gel), and for free cells, strontium content was 1.34–1.41 μg/ml. 72–75% bioremoval of strontium by free cells of different strains BR-6, BR-14, BR-18, BR-21, and BR-26 was observed after 10 days of incubation. 77–83% reduction in strontium content was observed in the presence of cells immobilized in 30% acrylamide, whereas higher reduction of 80–85% was observed for cells immobilized in 40% acrylamide after 10 days. At higher concentration of 10-μg/ml strontium, 62 to 71% reduction was observed with immobilized bacterial cells. Obtained results indicated that immobilized bacterial cells in hydrogels prepared by gamma irradiation were found to have significantly higher efficiency as compared to free cells for bioremoval of strontium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aty, A. M., Ammar, N. S., Ghafar, H. H. A., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4, 367–374.

    Article  CAS  Google Scholar 

  • Acosta-Rodriguez, I., Cardenas-Gonzalez, J. F., Rodriguez-Perez, A. S., Oviedo, J. T., & Martínez-Juárez, V. M. (2018). Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorganic Chemistry and Applications, 2018, 3457196.

    Article  Google Scholar 

  • Bai, J., Yang, X., Du, R., Chen, Y., Wang, S., & Qiu, R. (2014). Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil. Journal of Environmental Science, 26, 2056–2064.

    Article  Google Scholar 

  • Borrok, D. M., & Fein, J. B. (2005). The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: Testing non-electro static, diffuse, and triple-layer models. Journal of Colloid and Interface Science, 286, 110–126.

  • Bueno, V. B., Cuccovia, I. M., Chaimovich, H., & Catalani, L. H. (2009). PVP superabsorbent nanogels. Colloid and Polymer Science, 287, 705–713.

    Article  CAS  Google Scholar 

  • Chang, C., Zhang, L., Zhou, J., Zhang, L., & Kennedy, J. F. (2010). Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers, 82, 122–127.

    Article  CAS  Google Scholar 

  • Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: Kinetic and thermodynamic studies. Desalination, 235, 306–318.

  • Chung, A. P., Sousa, T., Pereira, A., & Morais, P. V. (2014). Microorganisms - tools for bioremediation of uranium contaminated environments. Procedia Earth and Planetary Science, 8, 53–58.

    Article  CAS  Google Scholar 

  • Coviello, T., Matricardi, P., Marianecci, C., & Alhaique, F. (2007). Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release, 119, 5–24.

    Article  CAS  Google Scholar 

  • Edri, R., Gal, I., Noor, N., Harel, T., Fleischer, S., Adadi, N., et al. (2019). Personalized hydrogels for engineering diverse fully autologous tissue implants. Advanced Materials, 31, 1803895.

    Article  Google Scholar 

  • Fernandes, R., & Gracias, D. H. (2012). Self-folding polymeric containers for encapsulation and delivery of drugs. Advanced Drug Delivery Reviews, 64, 1579–1589.

    Article  CAS  Google Scholar 

  • Gogada, R., Singh, S. S., Lunavat, S. K., Pamarthi, M. M., Rodrigue, A., Vadivelu, B., et al. (2015). Engineered Deinococcus radiodurans R1 with NiCo T genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Applied Microbiology and Biotechnology, 99, 9203–9213.

    Article  CAS  Google Scholar 

  • Gotovtsev, P. M., Yuzbasheva, E. Y., Gorin, K. V., Butylin, V. V., Badranova, G. U., Perkovskaya, N. I., et al. (2015). Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. Applied Biochemistry and Microbiology, 51, 792–803.

    Article  CAS  Google Scholar 

  • Greenwood, N. N., & Earnshaw, A. (1984). Chemistry of the elements. Oxford: Pergamon Press.

    Google Scholar 

  • Hennink, W. E., & van Nostrum, C. F. (2002). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 54, 13–36.

    Article  CAS  Google Scholar 

  • Hoare, T. R., & Kohane, D. S. (2008). Hydrogels in drug delivery: progress and challenges. Polymer, 49, 1993–2007.

    Article  CAS  Google Scholar 

  • Horiike, T., Dotsuta, Y., Nakano, Y., Ochiai, A., Utsunomiya, S., & Ohnuki, T., (2017). Removal of soluble strontium via incorporation into biogenic carbonate minerals by halophilic bacterium Bacillus sp. strain TK2d in a highly saline solution. Applied Environmental Microbiology, 83, e00855.

  • Hu, Y., Guo, X., Chen, C., & Wang, J. (2019). Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: Equilibrium, kinetics, and mass transfer. Applied Microbiology and Biotechnology, 103, 2833–2843.

    Article  CAS  Google Scholar 

  • Jasinska, U. T., Skapska, S., Owczarek, L., Dekowska, A., & Lewińska, D. (2018). Immobilization of Bifidobacterium infantis cells in selected hydrogels as a method of increasing their survival in fermented milkless beverages. Journal of Food Quality, 2018, 9267038.

    Article  Google Scholar 

  • Kinoshita, H., Sato, Y., Ohtake, F., Ishida, M., Komoda, T., Kitazawa, H., et al. (2015). In vitro mass-screening of lactic acid bacteria as potential biosorbents of cesium and strontium ions. Journal of Microbiology, Biotechnology and Food Sciences, 4, 383–386.

    Article  CAS  Google Scholar 

  • Long, J., Li, H., Jiang, D., Luo, D., Chen, Y., Xi, J., et al. (2017). Biosorption of strontium (II) from aqueous solutions by Bacillus cereus isolated from strontium hyperaccumulator Andropogon gayanus. Process Safety and Environmental Protection - Journal, 3, 23–30.

    Article  Google Scholar 

  • Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., et al. (2010). Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 31, 83–90.

    Article  CAS  Google Scholar 

  • Onuki, Y., Nishikawa, M., Morishita, M., & Takayama, K. (2008). Development of photocrosslinked polyacrylic acid hydrogel as an adhesive for dermatological patches: Involvement of formulation factors in physical properties and pharmacological effects. International Journal of Pharmaceutics, 349, 47–52.

    Article  CAS  Google Scholar 

  • Oyetibo, G. O., Ishola, S. T., Ikeda-Ohtsubo, W., Miyauchi, K., Ilori, M. O., & Endo, G. (2015). Mercury bioremoval by Yarrowia strains isolated from sediments of mercury-polluted estuarine water. Applied Microbiology and Biotechnology, 99, 3651–3657.

    Article  CAS  Google Scholar 

  • Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48, 1–38.

    Article  CAS  Google Scholar 

  • Peppas, N. A., & Mikos, A. G. (1986). Hydrogels in medicine and pharmacy. In Peppas, N. A. (Ed.), Vol. 1, Boca Raton, FL: CRC Press, pp 1-26.

  • Sasaki, K., Morikawa, H., Kishibe, T., Takeno, K., Mikami, A., Harada, T., et al. (2012). Practical removal of radioactivity from soil in Fukushima using immobilized photosynthetic bacteria combined with anaerobic digestion and lactic acid fermentation as pre-treatment. Bioscience Biotechnology and Biochemistry, 76, 1809–1814.

    Article  CAS  Google Scholar 

  • Sasaki, K., Morikawa, H., Kisibe, T., Takeno, K., Mikami, A., Harada, T., et al. (2013). Simultaneous removal of cesium and strontium using a photosynthetic bacterium, Rhodobacter sphaeroides SSI immobilized on porous ceramic made from waste glass. Advances in Bioscience and Biotechnology, 4, 26862.

    Article  Google Scholar 

  • Singh, D., Singh, A., & Singh, R. (2015). Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. Journal of Biomaterials Science, Polymer Edition, 26, 1269–1285.

    Article  CAS  Google Scholar 

  • Singh, R., Shitiz, K., & Singh, A. (2019). Immobilization of cesium-resistant bacterial cells by radiation polymerization and their bioremoval efficiency. Water Science and Technology, 79, 1587–1596.

    Article  CAS  Google Scholar 

  • Singh, R., & Singh, D. (2012). Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. Journal of Materials Science: Materials in Medicine, 23, 2649–2658.

    CAS  Google Scholar 

  • Song, M. H., Won, S. W., & Yun, Y. S. (2013). Decarboxylated polyethylenimine-modified bacterial biosorbent for Ru biosorption from Ru-bearing acetic acid wastewater. Chemical Engineering Journal, 230, 303–307.

    Article  CAS  Google Scholar 

  • Takei, T., Yamasaki, M., & Yoshida, M. (2014). Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices. Journal of Bioscience and Bioengineering, 117, 497-500.

  • Vasiev, I., Greer, A. I. M., Khokhar, A. Z., Stormonth-Darling, J., Tanner, K. E., & Gadegaard, N. (2013). Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process. Microelectronic Engineering, 108, 76–81.

    Article  CAS  Google Scholar 

  • Velkova, Z., Kirova, G., Stoytcheva, M., Kostadinova, S., Todorova, K., & Gochev, V. (2018). Immobilized microbial biosorbents for heavy metals removal. Engineering in Life Sciences, 18, 871–881.

    Article  CAS  Google Scholar 

  • Ward, M. A., & Georgiou, T. K. (2011). Thermoresponsive polymers for biomedical applications. Polymers, 3, 1215–1242.

    Article  CAS  Google Scholar 

  • Yamaguchi, D., Furukawa, K., Takasuga, M., & Watanabe, K. (2014). A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident. Scientific Reports, 4, 6053.

    Article  Google Scholar 

  • Yavari, R., Huang, D., & Mostofizadeh, A. (2010). Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. Journal of Radioanalytical and Nuclear Chemistry, 285, 703–710.

    Article  CAS  Google Scholar 

  • Yin, Y., Wang, J., Yang, X., & Li, W. (2017). Removal of strontium ions by immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres. Nuclear Engineering and Technology – Journal, 49, 172–177.

    Article  CAS  Google Scholar 

  • Zan, F., Huo, S., Xi, B., & Zhao, X. (2012). Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae. Frontiers of Environmental Science and Engineering, 6, 51–58.

    Article  CAS  Google Scholar 

  • Zeng, G., Li, N., Huang, D., Lai, C., Zhao, M., Huang, C., et al. (2015). The stability of Pb species during the Pb removal process by growing cells of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 99, 3685–3693.

    Article  CAS  Google Scholar 

  • Zhang, H., Li, H., Li, M., Luo, D., Chen, Y., Chen, D., et al. (2018). Immobilizing metal-resistant sulfate-reducing bacteria for cadmium removal from aqueous solutions. Polish Journal of Environmental Studies, 27, 2851–2859.

    Article  CAS  Google Scholar 

  • Zhao, Y., Dai, Q., Dong, F., Han, L., & Yan, W. (2016). Strontium removal by montmorillonite - Pseudomonas fluorescens system. Journal of Microbiology and Biotechnology, 5, 39–45.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, Defence Laboratory, Jodhpur for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Shitiz, K. & Singh, A. Immobilization of Bacterial Cells in Hydrogels Prepared by Gamma Irradiation for Bioremoval of Strontium Ions. Water Air Soil Pollut 231, 7 (2020). https://doi.org/10.1007/s11270-019-4374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4374-8

Keywords

Navigation