Skip to main content
Log in

Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The biosorption of Cd2+ and Cu2+ onto the immobilized Saccharomyces cerevisiae (S. cerevisiae) was investigated in this study. Adsorption kinetics, isotherms and the effect of pH were studied. The results indicated that the biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae was fast at initial stage and then became slow. The maximum biosorption of heavy metal ions on immobilized S. cerevisiae were observed at pH 4 for Cd2+ and Cu2+. by the pseudo-second-order model described the sorption kinetic data well according to the high correlation coefficient (R 2) obtained. The biosorption isotherm was fitted well by the Langmuir model, indicating possible mono-layer biosorption of Cd2+ and Cu2+ on the immobilized S. cerevisiae. Moreover, the immobilized S. cerevisiae after the sorption of Cd2+ and Cu2+ could be regenerated and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saygideger S, Gulnaz O, Istifli E S, Yucel N. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials, 2005, 126(1–3): 96–104

    Article  CAS  Google Scholar 

  2. Malkoc E, Nuhoglu Y. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 2005, 127(1–3): 120–128

    Article  CAS  Google Scholar 

  3. Mashitah M D, Azila Y, Bhatia S. Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology, 2008, 99(11): 4742–4748

    Article  CAS  Google Scholar 

  4. Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresource Technology, 2003, 89(3): 281–287

    Article  CAS  Google Scholar 

  5. Aksu Z, Egretli G, Kutsal T. A comparative study for the biosorption characteristics of chromium(VI) on ca-alginate, agarose and immobilized C. vulgaris in a continous packed bed column. Journal of Environmental Science and Health, 1999, A32(2): 295–316

    Article  Google Scholar 

  6. Say R, Denizli A, Arica M Y. Biosorption of cadmium(II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology, 2001, 76(1): 67–70

    Article  CAS  Google Scholar 

  7. Ghorbani., Younesi H, Ghasempouri S M, Zinatizadeh A A, Amini M, Daneshi A. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by S. cerevisiae. Chemical Engineering Journal, 2008, 145: 267–275

    Article  CAS  Google Scholar 

  8. Dang V B H, Doan H D, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology, 2009, 100(1): 211–219

    Article  CAS  Google Scholar 

  9. Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy, 1997, 44(3): 301–316

    Article  CAS  Google Scholar 

  10. Volesky B. Biosorption and me. Water Research, 2007, 41(18): 4017–4029

    Article  CAS  Google Scholar 

  11. Tunali S, Akar T, Ozcan A S, Kiran I, Ozcan A. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Separation and Purification Technology, 2006, 47(3): 105–112

    Article  CAS  Google Scholar 

  12. Vilar V J P, Botelho C M S, Loureiro J M, Boaventura R A R. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresource Technology, 2008, 99(13): 5830–5838

    Article  CAS  Google Scholar 

  13. Cochrane E L, Lu S, Gibb SW, Villaescusa I. A comparison of lowcost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials, 2006, 137(1): 198–206

    Article  CAS  Google Scholar 

  14. Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 2006, 24(5): 427–451

    Article  CAS  Google Scholar 

  15. Göksungur Y, Üren S, Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 2005, 96(1): 103–109

    Article  Google Scholar 

  16. Wang J L. Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 2002, 37(8): 847–850

    Article  CAS  Google Scholar 

  17. Vianna L L N, Andrade M C, Jacques R N. Screening ofwaste biomass from saccharomayces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentation for removal of Cu, Zn and Cd by biosorption, World Journal of Microbiology Biotechnology. 2000, 16: 437–4

    Article  CAS  Google Scholar 

  18. Özer A, Özer D, Ekiz H I. The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorpt-J Int Adsorpt Soc, 2004, 10: 317–326

    Google Scholar 

  19. Bakkaloglu I, Butter T J, Evison L M, Holland F S, Hancock I C. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Science and Technology, 1998, 38(6): 269–277

    Article  CAS  Google Scholar 

  20. Matheickal J T, Yu Q. Biosorption of lead from aqueous solutions by marine algae Ecklonia radiata. Water Science and Technology, 1996, 34(9): 1–7

    Article  CAS  Google Scholar 

  21. Chang J S, Huang J C, Chang C C, Tarn T J. Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass. Water Science and Technology, 1998, 38(4–5): 171–178

    Article  CAS  Google Scholar 

  22. Kratochvil D, Volesky B, Demopoulos G. Optimizing Cu removal/ recovery in a biosorption column. Water Research, 1997, 31(9): 2327–2339

    Article  CAS  Google Scholar 

  23. Arica M Y, Kaçar Y, Genç O. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 2001, 80(2): 121–129

    Article  CAS  Google Scholar 

  24. Bayramoglu G, Bektas S, Arica M Y. Biosorption of heavy metals on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Matererals. 2003, 101: 285–300.

    Article  CAS  Google Scholar 

  25. Volesky B, Weber J, Park JM. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Resarch, 2003, 37: 297–306

    Article  CAS  Google Scholar 

  26. Cussler E L. Diffusion-Mass Transfer in Fluid Systems (trans.Wang X Y, Jiang Z Y). 2th ed. Beijing: Chemical Industry Press, 2002, 199 (in Chinese)

    Google Scholar 

  27. Ho Y S, McKay G. The sorption of lead(II) ions on peat response to comment. Water Resarch, 1999, 33: 578–584

    Article  CAS  Google Scholar 

  28. McKay G, Ho Y S. Pseudo-second-order model for sorption processes. Process Biochemstry, 1999, 34: 451–465

    Article  Google Scholar 

  29. Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry, 2002, 38(1): 89–99

    Article  CAS  Google Scholar 

  30. Cruz C, Costa A, Henriques C, Luna A. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. Biomass. Bioresource Technology, 2004, 91: 249–257

    Article  CAS  Google Scholar 

  31. Sag Y, Kutsal T. The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. arrhizus. Process Biochemstry, 1996, 31: 561–572

    Article  CAS  Google Scholar 

  32. Módenes A N, de Abreu Pietrobelli J M T, Espinoza-Quiñones F R. Cadmium biosorption by non-living aquatic macrophytes Egeria densa. Water Science and Technology, 2009, 60(2): 293–300

    Article  Google Scholar 

  33. de Abreu Pietrobelli J M T, Módenes A N, Espinoza-Quiñones F R, Fagundes-Klen M R, Kroumov A. Removal of copper ions by nonliving aquatic macrophytes egeria densa. International Journal Bioautomation, 2009, 12(1): 21–32

    Google Scholar 

  34. Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research, 2003, 37(14): 3472–3480

    Article  CAS  Google Scholar 

  35. Kratochvil D, Volesky B. Biosorption of Cu from ferruginous wastewater by algal biomass. Water Resarch, 1998, 32(9): 2760–2768

    Article  CAS  Google Scholar 

  36. Chu K H, Hashim M A, Phang S M, Samuel V B. Biosorption of cadmium by algal biomass: adsorption and desorption characteristics. Water Science and Technology, 1997, 35(7): 115–122

    Article  CAS  Google Scholar 

  37. Pradhan S, Rai L C. Copper removal by immobilized M. aeruginosa in continuous flow columns at different bed heights: study of the adsorption/desorption cycle. World Journal of Microbiology Biotechnology, 2001, 17: 829–832

    Article  CAS  Google Scholar 

  38. Lázaro N, Sevilla A L, Morales S, Marqúes A M. Heavy metal biosorption by gellan gum gel beads. Water Resarch, 2003, 37: 2118–2126

    Article  Google Scholar 

  39. Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Resarch, 2003, 37: 4311–4330

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouliang Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zan, F., Huo, S., Xi, B. et al. Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae . Front. Environ. Sci. Eng. 6, 51–58 (2012). https://doi.org/10.1007/s11783-011-0206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0206-9

Keywords

Navigation