Skip to main content

Advertisement

Log in

Distribution of Metals and Cell Wall Compounds in Leaf Parts of Three Tree Species Suitable for the Phytomanagement of Heavy Metal–Contaminated Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phytomanagement used on soils contaminated with metals aims to stabilize them in the soil. It generally uses less demanding tree species such as maple, poplar, and black locust. However, it is important to consider the rate of accumulation of metals in the leaves as well as their location (leaf blade/petiole) together with the contents of cell wall compounds (hemicelluloses, cellulose, lignin). These two aspects are likely not only to have repercussions on the decomposition of litter but also to lead to a possible transfer of metal contamination into the food chain via soil decomposers/detritivorous. A successful phytoremediation is therefore the result of compromise: no tree species can meet all these criteria. The results obtained show that poplar is not recommended due to a high accumulation of Cd and Zn. The most appropriate species among our 3 studied species, which seem the most suitable in terms of remediation of metal polluted soils, could be the black locust and the maple which are less susceptible to contribute to the transfer of exogenous metals such as Cd to the trophic chain. However, maple strongly accumulates Pb in the leaf blade and it is susceptible to degrade quickly due to its high hemicelluloses and cellulose contents and low lignin content. The black locust accumulates metals mainly in the petiole (little consumed by detritivorous). However, its exotic character and high lignin content may limit the interest of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AFNOR, (1992a) Soil quality - physical methods - measurement of apparent density of unrepaired soil sample - cylinder method. In: NF ISO 31501. AFNOR, Paris.

  • AFNOR, (1992b) Determination of Ca2+, Mg2+, K+, Na+ cations extractable by ammonium acetate. In: NF ISO 31501. AFNOR, Paris.

  • AFNOR. (1993a). Soil quality — determination of phosphorus soluble in ammonium oxalates solution - Joret - Hébert method. In NF X (pp. 31–161). Paris: AFNOR.

    Google Scholar 

  • AFNOR, (1993b) Chemical methods: determination of organic carbon by oxidation sulphochromic. In: NF X 31109. AFNOR, Paris.

  • AFNOR, (1994a) Qualité du sol: Prétraitement des échantillons pour analyses physico-chimiques. In: NF ISO 11464, AFNOR, Paris.

  • AFNOR, (1994b) Soil quality- determination of dry matter and water content on a mass basis - gravimetric method. – Soil quality. In: NF ISO 11465. AFNOR, Paris.

  • AFNOR, (1994c) Soil quality - pH determination. In: NF ISO 10390. AFNOR, Paris.

  • AFNOR, (1995) Soil quality — determination of carbonate content — volumetric method. In: NF ISO 10693. AFNOR, Paris.

  • AFNOR. (1997). Aliments des animaux - Détermination séquentielle des constituants pariétaux - Méthode par traitement aux détergents neutre et acide et à l'acide sulfurique. In NF (pp. V18–V122). Paris: AFNOR.

    Google Scholar 

  • AFNOR, (1998) Soil quality, determination of Total nitrogen content by dry combustion (“elemental analysis”). In: NF ISO 13878. AFNOR, Paris.

  • AFNOR. (1999). Soil quality — chemical methods - determination of the cation exchange capacity (CEC) and extractable cations. In NF X (pp. 31–130). Paris: AFNOR.

    Google Scholar 

  • Aksoy, A., Sahin, U., & Duman, F. (2000). Robinia pseudo-acacia L. as a posssible biomonitor of heavy metal pollution in Kayseri. Turkish Journal of Botany, 24, 279–284.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Aligon, D., & Douay, F. (2011). Site atelier Metaleurop: Synthese des travaux de recherche realises autour de l ’ ancienne fonderie de Noyelles-Godault. Rapport de Synthèse ADEME , 385p.

  • André, O., Vollenweider, P., & Günthardt-Goerg, M. S. (2006). Foliage response to heavy metal contamination in sycamore maple (Acer pseudoplatanus L.). Forest Snow and Landscape Research, 80(3), 275–288.

    Google Scholar 

  • Antosiewicz, D. M. (1992). Adaptation of plants to an environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae, 91(2), 281–299.

    Article  Google Scholar 

  • Barrett, R. P., Mebrahtu, T., & Hanover, J. W. (1990). Black locust: a multi-purpose tree species for temperate climates. In J. Janick & J. E. Simon (Eds.), Advances in new crops (pp. 278–283). Portland, OR: Timber Press.

    Google Scholar 

  • Bengtsson, J., Nilsson, S. G., Franc, A., & Menozzi, P. (2000). Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management, 132(1), 39–50. https://doi.org/10.1016/S0378-1127(00)00378-9.

    Article  Google Scholar 

  • Berg, B., & McClaugherty, C. (2008). Plant litter decomposition, humus formation,carbon sequestration. Springer. https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.

  • Bidar, G., Garçon, G., Pruvot, C., Dewaele, D., Cazier, F., Douay, F., & Shirali, P. (2007). Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environmental Pollution, 147(3), 546–553. https://doi.org/10.1016/j.envpol.2006.10.013.

    Article  CAS  Google Scholar 

  • Bidar, G., Waterlot, C., Verdin, A., Proix, N., Courcot, D., Détriché, S., et al. (2016). Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: effects on the vertical distribution of physicochemical parameters and trace elements. Journal of Environmental Management, 171(March), 204–216. https://doi.org/10.1016/j.jenvman.2016.01.029.

    Article  CAS  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18. https://doi.org/10.1016/j.jcis.2004.04.005.

    Article  CAS  Google Scholar 

  • Campbell, C. R., & Plank, C. O. (1998, 1998). Preparation of plant tissue for laboratory analysis. In Y. Kalra (Ed.), Handbook of reference methods for plant analysis (pp. 37–49). CRC Press.

  • Chauvet, E. (1987). Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia, 148(1), 35–44. https://doi.org/10.1007/BF00018164.

    Article  CAS  Google Scholar 

  • Colombano, S., Saada, A., Guerin, V., Bataillard, P., Bellenfant, G., Beranger, S., … Girardeau, I. (2010). Quelles techniques pour quels traitements - Analyse coûts-bénéfices. Final Report BRGM-RP-58609-FR, pp 402. http://infoterre.brgm.fr/rapports/RP-58609-FR.pdf

  • Comeau, P. G., & Harper, G. J. (2009). Effects of vegetation control treatments for release of Engelmann spruce from a mixed-shrub community in southern British Columbia - year 15 results. Forestry Chronicle, 85(4), 583–592. https://doi.org/10.5558/tfc85583-4.

    Article  Google Scholar 

  • Cornelissen, J. H. C., Pérez-harguindeguy, N., Díaz, S., Philip, J., Marzano, B., Cabido, M., et al. (1999). Leaf forms structure in and defence across floras on control species two and litter life continents decomposition rate regional. New Phylotogist, 143(1), 191–200. https://doi.org/10.1046/j.1469-8137.1999.00430.x.

    Article  Google Scholar 

  • Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

    Article  Google Scholar 

  • Doelman, P., & Haanstra, L. (1979). Effects of lead on the decomposition of organic matter. Soil Biology and Biochemistry, 11(5), 481–485.

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian, M. N., & Wenzel, W. W. (2007). Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. Journal of Plant Nutrition and Soil Science, 170, 265–272. https://doi.org/10.1002/jpln.200622073.

    Article  CAS  Google Scholar 

  • Douay, F., & Bidar, G. (2015). Synthesis of PHYTENER programme: “Phytostabilisation development on metal-contaminated soils to produce energy: ecological viability, social advantages and economic assessment.” ADEME. Retrieved from http://www.ademe.fr/sites/default/files/assets/documents/phytener-synthese-en-201507.pdf

  • Douay, F., Pruvot, C., Waterlot, C., Fritsch, C., Fourrier, H., Loriette, A., et al. (2009). Contamination of woody habitat soils around a former lead smelter in the North of France. Science of the Total Environment, 407(21), 5564–5577. https://doi.org/10.1016/j.scitotenv.2009.06.015.

    Article  CAS  Google Scholar 

  • Douay, F., Planque, J., Fourrier, H., & Loriette, A. (2011). Site Metaleurop Nord a Noyelles-Godault (62): campagnes de mesures des teneurs en plomb et en cadmium autour de l’ancien site industriel. Rapport ADEME, 138.

  • Douay, F., Pelfrêne, A., Planque, J., Fourrier, H., Richard, A., Roussel, H., & Girondelot, B. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environmental Monitoring and Assessment, 185(5), 3665–3680. https://doi.org/10.1007/s10661-012-2818-3.

    Article  CAS  Google Scholar 

  • Duboc, O., Zehetner, F., Djukic, I., Tatzber, M., Berger, T. W., & Gerzabek, M. H. (2012). Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: mass loss and molecular characteristics. Geoderma, 189, 522–531. https://doi.org/10.1016/j.geoderma.2012.06.018.

    Article  CAS  Google Scholar 

  • Edwards, C. A. (2002). Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, 38(3–4), 225–231. https://doi.org/10.1016/S1164-5563(02)01150-0.

    Article  CAS  Google Scholar 

  • El Bassam, N. (2010). Handbook of bioenergy crops: a complete reference to species, development and applications. (Earthscan, Ed.). Taylor & Francis.

  • Enriquez, S., Duarte, C. M., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457–471. https://doi.org/10.1007/BF00566960.

    Article  CAS  Google Scholar 

  • Fairbrother, A., Wenstel, R., Sappington, K., & Wood, W. (2007). Framework for metals risk assessment., 68, 145–227. https://doi.org/10.1016/j.ecoenv.2007.03.015.

    Article  CAS  Google Scholar 

  • Fässler, E., Robinson, B. H., Stauffer, W., Gupta, S. K., Papritz, A., & Schulin, R. (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems and Environment, 136, 49–58. https://doi.org/10.1016/j.agee.2009.11.007.

    Article  CAS  Google Scholar 

  • Favas, P. J. C., Pratas, J., Varun, M., Souza, R. D., & Paul, M. S. (2014). Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native Flora. In M. C. Hernandez-Soriano (Ed.), Environmental risk assessment of soil contamination (pp. 485–517). InTec. https://doi.org/10.5772/57086.

    Google Scholar 

  • Fijalkowski, K., Kacprzak, M., Grobelak, A., & Placek, A. (2012). The influence of selected soil parameters on the mobility of heavy metals in soil. Inzynieria i Ochrona Srodowiska, 15(1), 81–92.

    CAS  Google Scholar 

  • Frouz, J., Roubíčková, A., Heděnec, P., & Tajovský, K. (2015). Do soil fauna really hasten litter decomposition ? A meta-analysis of enclosure studies. European Journal of Soil Biology, 68, 18–24. https://doi.org/10.1016/j.ejsobi.2015.03.002.

    Article  CAS  Google Scholar 

  • Gallardo, A., & Merino, J. (1993). Leaf decomposition in two mediterranean ecosystems of Southwest Spain: influence of substrate quality. Ecology, 74(1), 152–161.

    Article  Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology and Evolution, 25(6), 372–380. https://doi.org/10.1016/j.tree.2010.01.010.

    Article  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–371. https://doi.org/10.1016/j.envpol.2004.05.015.

    Article  CAS  Google Scholar 

  • Godzik, B. (1993). Heavy metals contents in plants from zinc dumps and reference area. Polish Botanical Studies, 5, 113–132.

    Google Scholar 

  • Grumiaux, F., Demuynck, S., Pernin, C., & Leprêtre, A. (2015). Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicology and Environmental Safety, 113, 183–190. https://doi.org/10.1016/j.ecoenv.2014.12.004.

    Article  CAS  Google Scholar 

  • Hammel, K. E. (1997) Fungal Degradation of Lignin. Driven by Nat. Plant Litter Qual. Decomposition. CAB-International, G. Cadisch K.E. Giller eds. pp. 33–45.

  • Hartley, M. J. (2002). Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management, 155(1–3), 81–95. https://doi.org/10.1016/S0378-1127(01)00549-7.

    Article  Google Scholar 

  • Hättenschwiler, S. (2005). Effects of tree species diversity on litter quality and decomposition. In E.-D. Schulze, M. Scherer-Lorenzen, & C. H. Körner (Eds.), Forest diversity and function: temperate and boreal systems (Vol. 176, pp. 149–164). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Hättenschwiler, S., & Gasser, P. (2005). Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1519–1524. https://doi.org/10.1073/pnas.0404977102.

    Article  CAS  Google Scholar 

  • Hermle, S., Günthardt-Goerg, M. S., & Schulin, R. (2006). Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environmental Pollution, 144(2), 703–714. https://doi.org/10.1016/j.envpol.2005.12.040.

    Article  CAS  Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. (Wiley, Ed.). https://doi.org/10.1002/9781444319477.

    Google Scholar 

  • Hoorens, B., Aerts, R., & Stroetenga, M. (2003). Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia, 137(4), 578–586. https://doi.org/10.1007/s00442-003-1365-6.

    Article  Google Scholar 

  • Irmler, U. (2000). Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia, 44(2), 105–118. https://doi.org/10.1078/S0031-4056(04)70032-3.

    Article  Google Scholar 

  • Jabeen, R., Ahmad, A., & Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review, 75, 339–364. https://doi.org/10.1007/s12229-009-9036-x.

    Article  Google Scholar 

  • Jabiol, B., Brêthes, A., Ponge, J., Toutain, F., & Brun, J. (2007). L’humus sous toutes ses formes. (ENGREF/Agroparistech, Ed.).

  • Juste, C. (1988). Appreciation de la mobilite et de la biodisponibilite des elements en traces du sol. Science Du Sol, 26(2), 103–112.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants, 4th edition. CRC Press.

  • Kalra, Y. (1998). Handbook of reference methods for plant analysis. CRC Press.

  • Karberg, N. J., Scott, N., & Giardina, C. P. (2008). Methods for estimating litter decomposition. In Field measurements for forest carbon monitoring: a landscape-scale approach (pp. 103–111). Springer Science. https://doi.org/10.1016/j.margeo.2004.04.016.

    Article  CAS  Google Scholar 

  • Kim, K. D., & Lee, E. J. (2005). Potential tree species for use in the restoration of unsanitary landfills. Environmental Management, 36(1), 1–14. https://doi.org/10.1007/s00267-004-1089-3.

    Article  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2015). Decomposition of birch leaves in heavily polluted industrial barrens: relative importance of leaf quality and site of exposure. Environmental Science and Pollution Research, 22(13), 9943–9950.

    Article  CAS  Google Scholar 

  • Küpper, H., Zhao, F. J., & McGrath, S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 119, 305–311.

    Article  Google Scholar 

  • Labidi, S., Firmin, S., Verdin, A., Bidar, G., Laruelle, F., Douay, F., et al. (2017). Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: a long-term field experiment. Ecotoxicology and Environmental Safety, 138, 190–198. https://doi.org/10.1016/j.ecoenv.2016.12.027.

    Article  CAS  Google Scholar 

  • Lanier, C., Bernard, F., Dumez, S., Leclercq, J., Lemière, S., Vandenbulcke, F., et al. (2016). Combined effect of Cd and Pb spiked field soils on bioaccumulation, DNA damage, and peroxidase activities in Trifolium repens. Environmental Science and Pollution Research, 23(2), 1755–1767. https://doi.org/10.1007/s11356-015-5414-6.

    Article  CAS  Google Scholar 

  • Lavelle, P., & Spain, A. (2001). Soil ecology. New York: Springer-Verlag New York.

  • Leclercq-Dransart, J., Pernin, C., Louvel, B., Demuynck, S., Grumiaux, F., Douay, F., & Leprêtre, A. (2018). Litter breakdown as a tool for assessment of the efficiency of afforestation and ash-aided phytostabilization on metal-contaminated soils functioning in Northern France. Environmental Science and Pollution Research, 25(19), 18579–18595. https://doi.org/10.1007/s11356-018-2038-7.

    Article  CAS  Google Scholar 

  • Leclercq-Dransart, J., Demuynck, S., Bidar, G., Douay, F., Grumiaux, F., Louvel, B., et al. (2019). Does adding fly ash to metal-contaminated soils play a role in soil functionality regarding metal availability, litter quality, microbial activity and the community structure of Diptera larvae? Applied Soil Ecology, 138, 99–111. https://doi.org/10.1016/j.apsoil.2019.02.027.

    Article  Google Scholar 

  • Lopareva-Pohu, A., Pourrut, B., Waterlot, C., Garçon, G., Bidar, G., Pruvot, C., et al. (2011). Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial. Part 1. Influence on soil parameters and metal extractability. Science of the Total Environment, 409(3), 647–654. https://doi.org/10.1016/j.scitotenv.2011.07.047.

    Article  CAS  Google Scholar 

  • Lucisine, P., Lecerf, A., Danger, M., Felten, V., Aran, D., Auclerc, A., et al. (2015). Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition. Science of the Total Environment, 537, 213–224. https://doi.org/10.1016/j.scitotenv.2015.07.112.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press. https://doi.org/10.1016/B978-0-12-473542-2.X5000-7.

    Book  Google Scholar 

  • Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3), 621–626. https://doi.org/10.2307/1936780.

    Article  CAS  Google Scholar 

  • Mench, M., Lepp, N., Bert, V., Schwitzguebel, J. P., Gawronski, S. W., Schröder, P., & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal of Soils and Sediments, 10(6), 1039–1070. https://doi.org/10.1007/s11368-010-0190-x.

    Article  CAS  Google Scholar 

  • Mertens, D. (1998). Effect of method variation on the determination of a NDF using the ANKOM filter bag system. US Dairy Forage Research Center, 1, 1–3.

    Google Scholar 

  • Mertens, J., Van Nevel, L., De Schrijver, A., Piesschaert, F., Oosterbaan, A., Tack, F. M. G., & Verheyen, K. (2007). Tree species effect on the redistribution of soil metals. Environmental Pollution, 149, 173–181. https://doi.org/10.1016/j.envpol.2007.01.002.

    Article  CAS  Google Scholar 

  • Migeon, A., Richaud, P., Guinet, F., Chalot, M., & Blaudez, D. (2009). Metal accumulation by woody species on contaminated sites in the north of France. Water, Air, and Soil Pollution, 204, 89–101. https://doi.org/10.1007/s11270-009-0029-5.

    Article  CAS  Google Scholar 

  • Migeon, A., Audinot, J., Eybe, T., Richaud, P., Damien, B., Migeon, H., & Chalot, M. (2010). Cadmium and zinc localization by SIMS in leaves of Populus deltoides (cv. Lena) grown in a metal polluted soil. Surface and Interface Analysis, 43, 367–369. https://doi.org/10.1002/sia.3445.

    Article  CAS  Google Scholar 

  • Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38(3–4), 297–300. https://doi.org/10.1016/S1164-5563(02)01169-X.

    Article  CAS  Google Scholar 

  • Niemela, J. (1997). Invertebrates and boreal forest management. Conservation Biology, 11(3), 601–610. https://doi.org/10.1046/j.1523-1739.1997.06008.x.

    Article  Google Scholar 

  • Nouri, J., Mahvi, A. H., Jahed, G. R., & Babaei, A. A. (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environmental Geology, 55, 1337–1343. https://doi.org/10.1007/s00254-007-1081-3.

    Article  CAS  Google Scholar 

  • Nsanganwimana, F., Pourrut, B., Mench, M., & Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Journal of Environmental Management, 143, 123–134. https://doi.org/10.1016/j.jenvman.2014.04.027.

    Article  CAS  Google Scholar 

  • Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., et al. (2015). Metal accumulation and shoot yield of Miscanthus x giganteus growing in contaminated agricultural soils: insights into agronomic practices. Agriculture, Ecosystems and Environment, 213, 61–71. https://doi.org/10.1016/j.agee.2015.07.023.

    Article  CAS  Google Scholar 

  • Oliver, M. A. (1997). Soil and human health: a review. European Journal of Soil Science, 48(4), 573–592. https://doi.org/10.1111/j.1365-2389.1997.tb00558.x.

    Article  CAS  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33(5), 477–493. https://doi.org/10.1007/s10653-010-9365-z.

    Article  CAS  Google Scholar 

  • Pérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3.

    Article  CAS  Google Scholar 

  • Perronnet, K., Schwartz, C., Emilie, G., & Morel, J. L. (2000). Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant and Soil, 227, 257–263.

    Article  CAS  Google Scholar 

  • Ponette, Q. (2010). Effet de la diversité des essences forestières sur la décomposition des litières et le cycle des éléments. Forêt Wallonne, 106(figure 1), 33–42.

    Google Scholar 

  • Pourrut, B., Lopareva-Pohu, A., Pruvot, C., Garçon, G., Verdin, A., Waterlot, C., et al. (2011). Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial. Part 2. Influence on plants. Science of the Total Environment, 409(21), 4504–4510. https://doi.org/10.1016/j.scitotenv.2011.07.047.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees - a review. Environment International, 29(4), 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6.

    Article  CAS  Google Scholar 

  • Quadros, A. F., Zimmer, M., Araujo, P. B., Kray, J. G., Pba, A. F. Q., De Pós-graduação, P., Animal, B., & De Zoologia, D. (2014). Litter traits and palatability to detritivores: a case study across bio-geographical boundaries. Nauplius, 22(2), 103–111. https://doi.org/10.1590/S0104-64972014000200004.

    Article  Google Scholar 

  • Remon, E., Bouchardon, J., Cornier, B., Guy, B., Leclerc, J., & Faure, O. (2005). Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environmental Pollution, 137, 316–323. https://doi.org/10.1016/j.envpol.2005.01.012.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875. https://doi.org/10.1016/j.scitotenv.2005.08.023.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., & Clothier, B. E. (2000). Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant and Soil, 227, 301–306.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology (Nature Publishing Company), 13(5), 468–474. https://doi.org/10.1038/nbt0595-468.

    Article  CAS  Google Scholar 

  • Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001.

    Article  CAS  Google Scholar 

  • Scheid, S., Günthardt-Goerg, M. S., Schulin, R., & Nowack, B. (2009). Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. European Journal of Soil Science, 60(4), 613–621. https://doi.org/10.1111/j.1365-2389.2009.01153.x.

    Article  CAS  Google Scholar 

  • Schnappinger, J. M. G., Martens, D. C., & Plank, C. O. (1975). Zinc availability as influenced by application of fly ash to soil. Environmental Science & Technology, 9, 258–261. https://doi.org/10.1021/es60101a009.

    Article  CAS  Google Scholar 

  • Sen, K. T., & Khilar, K. C. (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119(2–3), 71–96.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35–52.

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: a review. Minerals Engineering, 22(12), 1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001.

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2012). Phytoremediation of metal contaminated sites. International Journal of Earth Sciences and Engineering, 5(3), 428–436.

    CAS  Google Scholar 

  • Staunton, S. (2002). Direct and indirect effects of organic matter on metal immobilisation in soil. In Developments in soil science (Vol. 28, pp. 79–97). Elsevier. https://doi.org/10.1016/S0166-2481(02)80045-9.

    Google Scholar 

  • Sterckeman, T., Douay, F., Fourrier, H., & Proix, N. (2002a). Referentiel pedo-geochimique du Nord-Pas de Calais. Document de La Région Nord-Pas de Calais et Du Ministère de l ’ Environnement et de l ’ Aménagement Du Territoire ., pp. 128.

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002b). Assessment of the contamination of cultivated soil by eighteen trace elements around smelters in the north of France. Water, Air, and Soil Pollution, 135, 173–194. https://doi.org/10.1023/A:1014758811194.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.

  • Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011, 2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. https://doi.org/10.1155/2011/939161.

    Article  Google Scholar 

  • Tiller, K., Nayyar, V., & Clayton, P. (1979). Specific and nonspecific sorption of cadmium by soil clays as influenced by zinc and calcium. Australian Journal of Soil Research, 17, 17–28. https://doi.org/10.1071/SR9790017.

    Article  CAS  Google Scholar 

  • Tlustoš, P., Pavlikova, D., Szakova, J, et al (2006) Phytoremediation and Rhizoremediation-Exploitation of Fast Growing Trees in Metal Remediation. Springer Netherlands 83–102.

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos, P., Zupan, M., & Wenzel, W. W. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution (Barking, Essex : 1987), 148(1), 107–114. https://doi.org/10.1016/j.envpol.2006.10.035.

    Article  CAS  Google Scholar 

  • Van Soest, P. J., & Wine, R. H. (1968). Determination of lignin and cellulose in acid detergent fiber with permanganate. Journal of the A.O.A.C, 51(4), 780–785.

    Google Scholar 

  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

    Article  Google Scholar 

  • Vandecasteele, B., Lauriks, R. A. F., De Vos, B., & Tack, F. M. G. (2003). Cd and Zn concentration in hybrid poplar foliage and leaf beetles grown on polluted sediment-derived soils. Environmental Monitoring and Assessment, 89, 263–283.

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Article  Google Scholar 

  • Vollenweider, P., Menard, T., & Günthardt-Goerg, M. S. (2011). Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level. Environmental Pollution, 159, 324–336. https://doi.org/10.1016/j.envpol.2010.07.013.

    Article  CAS  Google Scholar 

  • Vuidot, A., Paillet, Y., Archaux, F., & Gosselin, F. (2011). Influence of tree characteristics and forest management on tree microhabitats. Biological Conservation, 144(1), 441–450. https://doi.org/10.1016/j.biocon.2010.09.030.

    Article  Google Scholar 

  • Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281, 325–337. https://doi.org/10.1007/s11104-005-4642-9.

    Article  CAS  Google Scholar 

  • Waterlot, C., Bidar, G., Pelfrêne, A., Roussel, H., Fourrier, H., & Douay, F. (2013). Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere, 23, 143–159. https://doi.org/10.1016/S1002-0160(13)60002-8.

    Article  CAS  Google Scholar 

  • Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729. https://doi.org/10.1016/j.proenv.2012.10.099.

    Article  CAS  Google Scholar 

  • Zacchini, M., Pietrini, F., Scarascia-Mugnozza, G., Iori, V., Pierosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics metal tolerance. Water, Air, and Soil Pollution, 197, 23–34. https://doi.org/10.1007/s11270-008-9788-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was undertaken under the research programs “ResBioFonc” and “Phytener.” The authors are grateful to the company “STB Matériaux” for providing the experimental field.

Funding

Financial support for this work was provided by the Regional Council of Nord-Pas de Calais, ADEME, and Catholic University of Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Leclercq-Dransart.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclercq-Dransart, J., Demuynck, S., Waterlot, C. et al. Distribution of Metals and Cell Wall Compounds in Leaf Parts of Three Tree Species Suitable for the Phytomanagement of Heavy Metal–Contaminated Soils. Water Air Soil Pollut 230, 237 (2019). https://doi.org/10.1007/s11270-019-4290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4290-y

Keywords

Navigation