Skip to main content

Advertisement

Log in

Effects of a soil organic amendment on metal allocation of trees for the phytomanagement of mining-impacted soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The suitable application of phytomanagement by phytostabilisation using plant tree species in metal-polluted soils requires an assessment of the fate of metals in biological tree compartments. The goal of this work was to evaluate the effect of an urban compost amendment on metal allocation in two evergreen tree species (Pinus halepensis and Tetraclinis articulata) growing in a metal-enriched polluted substrate. A comprehensive characterisation of edaphic parameters and metal speciation was carried out. Plant analyses included metal concentrations in different tree compartments: roots, stems, branches and leaves. The amendment caused a significant increase in plant biomass for both trees, although T. articulata produced 2.5 times more biomass than P. halepensis. The amendment alleviated P deficiency in P. halepensis. This did not occur for the N deficiency detected in T. articulata. The latter showed no effect of the amendment in the allocation of metals, being most of them restricted at the root compartment (> 50%). For P. halepensis, similar behaviour occurred for Cu, Pb and Zn. However, for Cd, the amendment caused its redistribution into pine shoots, probably due to its transport associated with the increased transpiration. Results indicated that T. articulata may be a promising tree species to be used in phytomanagement programs under semiarid climates due to its low metal translocation into shoots and remarkable biomass production under amendment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernal, M. P., Clemente, R., & Walker, D. J. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In R. W. Gore (Ed.), Environmental research at the leading edge (pp. 1–57). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Boyter, M. J., Brummer, J. E., & Leininger, W. C. (2009). Growth and metal accumulation of Geyer and Mountain willow grown in topsoil versus amended mine tailings. Water Air and Soil Pollution,198(1–4), 17–29.

    Article  CAS  Google Scholar 

  • Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. (1987). Plant responses to multiple environmental factors. BioScience,37(1), 49–57.

    Article  Google Scholar 

  • Clemente, R., Pardo, T., Madejón, P., Madejón, E., & Bernal, M. P. (2015). Food by products as amendments in trace elements contaminated soils. Food Research International,73, 176–189.

    Article  CAS  Google Scholar 

  • Conesa, H. M., & Schulin, R. (2010). The Cartagena-La union on mining district (SE Spain): A review of environmental problems and emerging phytoremediation solutions after fifteen years research. Journal of Environmental Monitoring,12(6), 1225–1233.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Conesa, H. M., Robinson, B. H., & Schulin, R. (2012). Biomass production on trace element-contaminated land: A review. Environmental Engineering Science,29(9), 823–839. https://doi.org/10.1089/ees.2011.0428.

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Papazoglou, E. G., Robinson, B. H., & Schulin, R. (2015). Phytomanagement: Phytoremediation and the production of biomass for economic revenue on contaminated land. In A. Ansari, S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants (Vol. 1, pp. 115–132). Cham: Springer.

    Google Scholar 

  • Fuentes, D., Disante, K. B., Valdecantos, A., Cortina, J., & Ramon-Vallejo, V. (2007). Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere,66(3), 412–420.

    Article  CAS  Google Scholar 

  • He, S., Yang, X., He, Z., & Baligar, V. C. (2017). Morphological and physiological responsesof plants to cadmium toxicity: A review. Pedosphere,27(3), 421–438.

    Article  CAS  Google Scholar 

  • Laitinen, K., Luomala, E.-M., Kellomäki, A., & Vapaavuori, E. (2000). Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Tree Physiology,20(13), 881–892.

    Article  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid andsemiaridenvironmentsan emerging remediation technology. Environmental Health Perspectives,116(3), 278–283.

    Article  CAS  Google Scholar 

  • Nirola, R., Megharaj, M., Palanisami, Th, Aryal, R., Venkateswarlu, K., & Naidu, R. (2015). Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine quest for phytostabilization. Journal of Sustainable Mining,14(3), 115–123.

    Article  Google Scholar 

  • Olde-Venterink, H., Wassen, M., Verkroost, A. W. M., & de Ruiter, P. C. (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology,84(8), 2191–2199.

    Article  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanable, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S.D.A. Circular No. 939. U.S. Government Printing Office, Washington, D.C.

  • Párraga-Aguado, I., Querejeta, J. I., González-Alcaraz, M. N., & Conesa, H. M. (2014a). Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings. Science of the Total Environment,485–486, 406–414.

    Article  Google Scholar 

  • Párraga-Aguado, I., Querejeta, J. I., González-Alcaraz, M. N., Jiménez-Cárceles, F. J., & Conesa, H. M. (2014b). Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. Journal of Environmental Management,133, 51–58.

    Article  Google Scholar 

  • Párraga-Aguado, I., Alcoba-Gómez, P., & Conesa, H. M. (2017). Suitability of a municipal solid waste as organic amendment for agricultural and metal(loid)-contaminated soils: Effects on soil properties, plant growth and metal(loid)s allocation in Zea mays L. Journal of Soils and Sediments,17(10), 2469–2480.

    Article  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—A review. Environment International,29(4), 529–540.

    Article  CAS  Google Scholar 

  • Querejeta, J. I., Barberá, G. G., Granados, A., & Castillo, V. M. (2008). Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. Forest Ecology and Management,254(1), 56–64.

    Article  Google Scholar 

  • Redovniković, I. R., De Marco, A., Proietti, Ch., Hanousek, K., Sedak, M., Bilandžić, N., et al. (2017). Poplar response to cadmium and lead soil contamination. Ecotoxicology and Environmental Safety,144, 482–489.

    Article  Google Scholar 

  • Robinson, B. H., Bañuelos, G., Conesa, H. M., Evangelou, M. W. H., & Schulin, R. (2009). The phytomanagement of trace elements in soil. Critical Reviews in Plant Sciences,28(4), 240–266.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology,49, 643–668.

    Article  CAS  Google Scholar 

  • Sánchez Gómez, P., Stevens, D, Fennane, M, Gardner, M., & Thomas, P. (2011). Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en. Accessed 15 July 2019.

  • Scheidegger, Y., Saurer, M., Bahn, M., & Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: A conceptual model. Oecologia,125(3), 350–357.

    Article  CAS  Google Scholar 

  • Tlustos, P., Száková, J., Vyslouzilová, M., Pavlíková, D., Weger, J., & Javorská, H. (2007). Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Central European Journal of Biology,2(2), 254–275.

    CAS  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos, P., Zupan, M., et al. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution,148(1), 107–114.

    Article  CAS  Google Scholar 

  • Zeien, H., & Brümmer, G. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt Dtsch. Bodenkd. Ges., 59(1), 505–510.

    Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by FEDER and the Ministerio de Ciencia, Innovación y Universidades of Spain (Project CTM2014-54029-R). We acknowledge Obdulia Martínez for her assistance in laboratory procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Conesa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conesa, H.M., Párraga-Aguado, I. Effects of a soil organic amendment on metal allocation of trees for the phytomanagement of mining-impacted soils. Environ Geochem Health 43, 1355–1366 (2021). https://doi.org/10.1007/s10653-019-00479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00479-0

Keywords

Navigation