Skip to main content
Log in

Metal Accumulation by Woody Species on Contaminated Sites in the North of France

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Metal accumulation was investigated in a range of woody species that were planted on Cd-, Zn- and Pb- polluted sites in North of France. The study is unique in that we directly compare a large number of woody species (25). The highest accumulation of Zn and Cd was found in the Salicaceae family members with up to 950 mg Zn kg−1 dry weight (DW) and 44 mg Cd kg−1 DW in leaves of Populus tremula × Populus tremuloides. Zn content was positively correlated with Cd content, both in leaves and stems. Pb concentration was generally low and was species-independent. Oak and birch species accumulated more Mn as compared to other woody species. A seasonal variation in metal accumulation could be found. Although soil compositions and metal bioavailabilities differed amongst the experimental sites chosen in this study, variation of metal concentrations within a given species was small. High bioconcentration factors for poplar and willow suggested the high potential of these species over other woody species for metal accumulation. Taken together, these data suggest that poplar and willow species are good candidates for phytoremediation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AFNOR. (1999). Recueil de normes: qualité des sols. Paris: Association Française de Normalisation.

    Google Scholar 

  • Anderson, C. H., Deram, A., Petit, D., Brooks, R. R., Stewart, R., & Simcock, R. (2001). Induced hyperaccumulation: metal movement and problems, pp. 63–79. Boca Raton: Lewis.

    Google Scholar 

  • Bargagli, R. (1998). Trace element in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery, p. 324. Berlin: Springer.

    Google Scholar 

  • Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals, pp. 289–312. Wallingford: CAB International.

    Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh & J. M. Kla (Eds.), Land treatment of hazardous waste, pp. 50–76. Park Ridge: Noyes Data.

    Google Scholar 

  • Cui, Y., Zhu, Y. G., Zhai, R., Huang, Y., Qiu, Y., & Liang, J. (2005). Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 31, 784–790. doi:10.1016/j.envint.2005.05.025.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13, 393–397. doi:10.1016/S0167-7799(00) 88987-8.

    Article  CAS  Google Scholar 

  • Dickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environment International, 31, 609–613. doi:10.1016/j.envint.2004.10.013.

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian, M. N., & Wenzel, W. W. (2007). Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. Journal of Plant Nutrition and Soil Science, 170, 265–272. doi:10.1002/jpln.200622073.

    Article  CAS  Google Scholar 

  • Douay, F., Roussel, H., Pruvot, C., Loriette, A., & Fourrier, H. (2008). Assessment of a remediation technique using the replacement of contaminated soils in kitchen gardens nearby a former lead smelter in Northern France. The Science of the Total Environment, 401, 29–38. doi:10.1016/j.scitotenv.2008.03.025.

    Article  CAS  Google Scholar 

  • French, C. J., Dickinson, N. M., & Putwain, P. D. (2006). Woody biomass phytoremediation of contaminated brownfield land. Environmental Pollution, 141, 387–395. doi:10.1016/j.envpol.2005.08.065.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Peralta-Videa, J. R., De La Rosa, G., & Parsons, J. G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 249, 1797–1810. doi:10.1016/j.ccr.2005.01.001.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis, pp. 383–411. Madison: American Society of Agronomy and Soil Science Society of Agronomy.

    Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcala de Henares, Spain: Human health risks. Environment International, 28, 159–164. doi:10.1016/S0160-4120(02) 00024-7.

    Article  CAS  Google Scholar 

  • Greger, M. (1999). Salix as phytoextractor. (In) D. C. Adriano, B. Alloway, H. E. Doner, C. Keller, N. W. Lepp, M. Mench, R. Naidu, & G. M. Pierzynski (Ed.), Proc. 5th International Conference on the biochemistry of trace elements, Vienna, Austria, pp. 872–873.

  • Hammer, D., Kayser, A., & Keller, C. (2003). Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use and Management, 19, 187–192. doi:10.1079/SUM2002183.

    Google Scholar 

  • Hawf, L. R., & Schmid, W. E. (1967). Uptake and translocation of zinc by intact plants. Plant and Soil, 27, 249–260. doi:10.1007/BF01373393.

    Article  CAS  Google Scholar 

  • Hough, R. L., Breward, N., Young, S. D., Crout, N. M. J., Tye, A. M., Moir, A. N., et al. (2004). Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environmental Health Perspectives, 112, 215–221.

    CAS  Google Scholar 

  • Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32. doi:10.1016/j.geoderma.2006.08.024.

    Article  CAS  Google Scholar 

  • Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249, 127–137. doi:10.1023/A:1022585404481.

    Article  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180. doi:10.1016/0883-2927(95) 00082-8.

    Article  CAS  Google Scholar 

  • Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131, 485–494. doi:10.1016/j.envpol.2004.02.009.

    Article  CAS  Google Scholar 

  • Lefevre, P. (1961). Contribution à l'étude de la capacité d'échange et des bases échangeables des sols non calcaires. I. Capacité d'échanges. Discussion et choix des méthodes. Annales d'agronomie, 12, 169–206.

    CAS  Google Scholar 

  • Leroyer, A., Hemon, D., Nisse, C., Auque, G., Mazzuca, M., & Haguenoer, J.-M. (2001). Determinants of cadmium burden levels in a population of children living in the vicinity of nonferrous smelters. Environmental Research, 87, 147–159. doi:10.1006/enrs.2001.4300.

    Article  CAS  Google Scholar 

  • Lombini, A., Llugany, M., Poschenrieder, C., Dinelli, E., & Barcelo, J. (2003). Influence of the Ca/Mg ratio on Cu resistance in three Silene armeria ecotypes adapted to calcareous soil or to different, Ni- or Cu-enriched, serpentine sites. Journal of Plant Physiology, 160, 1451–1456. doi:10.1078/0176-1617-01002.

    Article  CAS  Google Scholar 

  • Lunackova, L., Masarovicova, E., Kral'Ova, K., & Stresko, V. (2003). Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 70, 576–585. doi:10.1007/s00128-003-0024-2.

    Article  CAS  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition, p. 849. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130. doi:10.1016/j.envpol.2006.03.021.

    Article  CAS  Google Scholar 

  • Mertens, J., Vervaeke, P., De Schrijver, A., & Luyssaert, S. (2004). Metal uptake by young trees from dredged brackish sediment: Limitations and possibilities for phytoextraction and phytostabilisation. The Science of the Total Environment, 326, 209–215. doi:10.1016/j.scitotenv.2003.12.010.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60, 193–207. doi:10.1016/S0013-7952(00) 00101-0.

    Article  Google Scholar 

  • Park, J., Kim, Y.-Y., Martinoia, E., & Lee, Y. (2008). Long-distance transporters of inorganic nutrients in plants. Journal of Plant Biology, 51, 240–247.

    Article  CAS  Google Scholar 

  • Piczak, K., Lesniewicz, A., & Zyrnicki, W. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment, 86, 273–287. doi:10.1023/A:1024076504099.

    Article  CAS  Google Scholar 

  • Pruvot, C., Douay, F., Herve, F., & Waterlot, C. (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments, 6, 215–220. doi:10.1065/jss2006.10.186.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—A review. Environment International, 29, 529–540. doi:10.1016/S0160-4120(02) 00152-6.

    Article  CAS  Google Scholar 

  • Pulford, I. D., Riddell-Black, D., & Stewart, C. (2002). Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. International Journal of Phytoremediation, 4, 59–72. doi:10.1080/15226510208500073.

    Article  CAS  Google Scholar 

  • Punshon, T., & Dickinson, N. M. (1997). Acclimation of Salix to metal stress. The New Phytologist, 137, 303–314. doi:10.1111/j.1469-8137.1997.tb01223.x.

    Article  CAS  Google Scholar 

  • Punshon, T., Lepp, N. W., & Dickinson, N. M. (1995). Resistance to copper toxicity in some British willows. Journal of Geochemical Exploration, 52, 259–266. doi:10.1016/0375-6742(94) 00048-G.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., & Clothier, B. E. (2000). Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 227, 301–306. doi:10.1023/A:1026515007319.

    Article  CAS  Google Scholar 

  • Rosselli, W., Keller, C., & Boschi, K. (2003). Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil, 256, 265–272. doi:10.1023/A:1026100707797.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sebastiani, L., Scebba, F., & Tognetti, R. (2004). Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and I-214 (P. x euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52, 79–88. doi:10.1016/j.envexpbot.2004.01.003.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air and Soil Pollution, 135, 173–194. doi:10.1023/A:1014758811194.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., Schvartz, C., et al. (2006). Trace element distributions in soils developed in loess deposits from northern France. European Journal of Soil Science, 57, 392–410. doi:10.1111/j.1365-2389.2005.00750.x.

    Article  CAS  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos, P., Zupan, M., et al. (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114. doi:10.1016/j.envpol.2006.10.035.

    Article  CAS  Google Scholar 

  • Vandecasteele, B., Samyn, J., De Vos, B., & Muys, B. (2008). Effect of tree species choice and mineral capping in a woodland phytostabilisation system: A case-study for calcareous dredged sediment landfills with an oxidised topsoil. Ecological Engineering, 32, 263–273. doi:10.1016/j.ecoleng.2007.12.002.

    Article  Google Scholar 

  • Vangronsveld, J. (1998a). Case studies in the field—Arsenic contaminated kitchen gardens. In J. Vangronsveld & S. D. Cunningham (Eds.), Metal-contaminated soils: In situ inactivation and phytorestoration, pp. 227–228. Berlin: Springer.

    Google Scholar 

  • Vangronsveld, J. (1998b). Cases studies in the field—Zn, Cd, Pb contaminated kitchen gardens. In J. Vangronsveld & S. D. Cunningham (Eds.), Metal-contaminated soils: In situ inactivation and phytorestoration, pp. 219–226. Berlin: Springer.

    Google Scholar 

  • Vangronsveld, J, Van Assche, F, & Clijsters, H. (1991). Reclamation of a 'desert like' site in the north East of Belgium: Evolution of the metal pollution and experiments in situ. In Proc. Int. Conf. Heavy Metals in the Environment, Edinburgh, pp 58-61

  • Wieshammer, G., Unterbrunner, R., Garcia, T. B., Zivkovic, M. F., Puschenreiter, M., & Wenzel, W. W. (2007). Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298, 255–264. doi:10.1007/s11104-007-9363-9.

    Article  CAS  Google Scholar 

  • Williams, L. E., & Mills, R. F. (2005). P1B-ATPases—An ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 10, 491–502. doi:10.1016/j.tplants.2005.08.008.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., Breedon, T., & McGrath, S. P. (2000). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell & Environment, 23, 507–514. doi:10.1046/j.1365-3040.2000.00569.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Annick Brun-Jacob, Barbara Montanini and Claire Fourrey for their help with leaf harvests. This work was supported by an ANR PRECODD project (ANR-06-ECOT-O15-01) and by a Ph.D. grant to A. Migeon from the Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) and the Conseil Régional de Lorraine. We also thank Bertrand Girondelot from ADEME (Douai, France) for providing us with access to the experimental sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Blaudez.

Appendix

Appendix

Norme expérimentale. X 31-107. Qualité des sols. Analyse granulométrique par sédimentation. Méthode de la pipette. AFNOR, 1983, in AFNOR (1999).

Norme française. NF ISO 10694. Qualité du sol—Dosage du carbone organique et du carbone total après combustion sèche (analyse élémentaire). AFNOR, 1995, in AFNOR (1999).

Norme française. NF ISO 13878. Qualité du sol—Détermination de la teneur totale en azote par combustion sèche (“analyse élémentaire”). AFNOR, 1998, in AFNOR (1999).

Norme française. NF X 31-130. Qualité des sols. Méthodes chimiques. Détermination de la capacité d'échange cationique (CEC) et des cations extractibles. AFNOR, 1993, in AFNOR (1999).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migeon, A., Richaud, P., Guinet, F. et al. Metal Accumulation by Woody Species on Contaminated Sites in the North of France. Water Air Soil Pollut 204, 89–101 (2009). https://doi.org/10.1007/s11270-009-0029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0029-5

Keywords

Navigation