Skip to main content
Log in

Application of Natural Organic Residues as Adsorbents to Remove Lead from Waters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The contamination of the environment by potentially toxic metals is highlighted by possible impacts of their high availability. Thus, the development of alternative absorbents that can be used in the remediation of contaminated areas, systems that are able to interact with these metals and affect their disposal, transportation, and bioavailability, is of great interest. Natural organic residue (NOR), often discarded as waste, is a promising alternative because it is capable of affecting the bioavailability of potentially toxic metals in the environment. This study assessed the interaction between NOR and NOR ashes (inorganic constituents) and lead ion (Pb2+), and its potential of adsorption, in order to analyze their use in contaminated areas. Two different NOR were evaluated and its structural characteristics presented differences in their organic material content and in its complexing capacity. NOR2 presented better capacity of complexing and adsorption of Pb2+ ions, performance that must be associated to the higher amount of organic matter present in the soil of this residue. In addition, the adsorption at pH 7.0 occurred through specific interactions with certain functional groups on the surface of NOR and NOR ashes. Besides that, the retention capacity of the Pb2+ ions was concentration dependent, in which the highest amount of mass will be the adsorbent retention. In light of this, the results obtained in this work highlight the importance of natural organic residues as a natural adsorbent material to lead removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya, J., Sahu, J. N., Mohanty, C. R., & Meikap, B. C. (2009). Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal, 149, 249–262.

    Article  CAS  Google Scholar 

  • Andreas, R., & Zhang, J. (2014). Characteristics of adsorption interactions of cadmium (II) onto humin from peat soil in freshwater and seawater media. Bulletin of Environmental Contamination and Toxicology, 92, 352–357.

    Article  CAS  Google Scholar 

  • Aquino, A. J. A., Tunega, D., Pašalic, H., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2008). The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models - a theoretical study. Chemical Physics, 349, 69–76.

    Article  CAS  Google Scholar 

  • Barbosa, R., Lapa, N., Lopes, H., Günther, A., Dias, D., & Mendes, B. (2014). Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters. Journal of Colloid and Interface Science, 424, 27–36.

    Article  CAS  Google Scholar 

  • Burba, P., van den Bergh, J., & Klockow, D. (2001). On-site characterization of humic-rich hydrocolloids and their metal loading by means of mobile size-fractionation and exchange techniques. Fresenius' Journal of Analytical Chemistry, 371, 660–669.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. The Science of the Total Environment, 512–513, 143–153.

    Article  Google Scholar 

  • Costa, C., Araujo, E. R., Olivieri, R. D., Ribeiro, M. I. F. C. A., & Lucena, R. (2012). Casos paradigmáticos sobre contaminação provocada por chumbo em várias regiões do mundo. In CETEM/MCTI (Ed.), Projeto Santo Amaro - BA, aglutinando ideias, construindo soluções: diagnósticos (pp. 191–221). Rio de Janeiro: CETEM/MCTI.

    Google Scholar 

  • De Mattos, G. F., Costa, C., Savio, F., Alonso, M., & Nicolson, G. L. (2017). Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophysical Reviews, 9, 807–825.

    Article  Google Scholar 

  • Donovan, P. P., Feeley, D. T., & Canavan, P. P. (1969). Lead contamination in mining areas in Western Ireland II-survey of animals, pastures, foods and waters. Journal of the Science of Food and Agriculture, 20, 43–45.

    Article  CAS  Google Scholar 

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5, 47–58.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. The Journal of Physical Chemistry, 57, 385–470.

    CAS  Google Scholar 

  • G1 (2018). Terreno de antiga fábrica de baterias vira garimpo de chumbo no interior de SP. https://g1.globo.com/sp/sorocaba-jundiai/noticia/2018/08/19/terreno-de-antiga-fabrica-de-baterias-vira-garimpo-de-chumbo-no-interior-de-sp.ghtml. Accessed 04 September 2018.

  • Gupta, V. K., & Ali, I. (2004). Removal of lead and chromium from wastewater using bagasse fly ash a sugar industry waste. Journal of Colloid and Interface Science, 271, 321–328.

    Article  CAS  Google Scholar 

  • Jacundino, J. S., Santos, O. S., Santos, J. C. C., Botero, W. G., Goveia, D., Carmo, J. B., & Oliveira, L. C. (2015). Interactions between humin and potentially toxic metals: Prospects for its utilization as an environmental repair agent. Journal of Environmental Chemical Engineering, 3, 708–715.

    Article  Google Scholar 

  • Jesus, A. M. D., Romão, L. P. C., Araújo, B. R., Costa, A. S., & Marques, J. J. (2011). Use of humin as an alternative material for adsorption/desorption of reactive dyes. Desalination, 274, 13–21.

    Article  CAS  Google Scholar 

  • Jin, L., & Bai, R. (2002). Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 18, 9765–9770.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Levin, R., Brown, M. J., Kashtock, M. E., Jacobs, D. E., Whelan, E. A., Rodman, J., Schock, M. R., Padilla, A., & Sinks, T. (2008). Lead exposures in U.S. children, 2008: implications for prevention. Environmental Health Perspectives, 116, 1285–1293.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters, 357, 263–266.

    Article  CAS  Google Scholar 

  • Mañay, N., Cousillas, A. Z., Alvarez, C., & Heller, T. (2008). Lead contamination in Uruguay: The “La Teja” neighborhood case. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology (pp. 93–115). New York: Springer.

    Google Scholar 

  • Neubecker, T. A., & Allen, H. E. (1983). The measurement of complexation capacity and conditional stability constants for ligands in natural waters. Water Research, 17, 1–14.

    Article  CAS  Google Scholar 

  • Nyairo, W. N., Eker, Y. R., Kowenje, C., Akin, I., Bingol, H., Tor, A., & Ongeri, D. M. (2018). Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Separation Science and Technology, 53, 1498–1510.

    Article  CAS  Google Scholar 

  • Oliveira, L. C., Sargentini, E., Jr., Rosa, A. H., Rocha, J. C., Simões, M. L., Martin-Neto, L., Silva, W. T. L., & Serudo, R. L. (2007). The influence of seasonalness on the structural characteristics of aquatic humic substances extracted from Negro River (Amazon State) waters: Interactions with Hg(II). Journal of the Brazilian Chemical Society, 18, 860–868.

    Article  Google Scholar 

  • Oliveira, D. A. V., Botero, W. G., Santos, J. C. C., Silva, R. M., Pitombo, L. M., Carmo, J. B., Rosa, L. M. T., & Oliveira, L. C. (2017). Interaction study between humin and phosphate: possible environmental remediation for domestic wastewater. Water, Air, and Soil Pollution, 228, 265.

    Article  Google Scholar 

  • Olson, T. M., Wax, M., Yonts, J., Heidecorn, K., Haig, S. J., Yeoman, D., Hayes, Z., Raskin, L., & Ellis, B. R. (2017). Forensic estimates of lead release from lead service lines during the water crisis in flint, Michigan. Environmental Science & Technology Letters, 4, 356–361.

    Article  CAS  Google Scholar 

  • Onianwa, P. C., & Fakayode, S. O. (2000). Lead contamination of topsoil and vegetation in the vicinity of a battery factory in Nigeria. Environmental Geochemistry and Health, 22, 211–218.

    Article  CAS  Google Scholar 

  • Onundi, Y. B., Mamun, A. A., Al Khatib, M. F., & Ahmed, Y. M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. International journal of Environmental Science and Technology, 7, 751–758.

    Article  CAS  Google Scholar 

  • Rosa, L. M. T., Botero, W. G., Santos, J. C. C., Cacuro, T. A., Waldman, W. R., Carmo, J. B., & Oliveira, L. C. (2018). Natural organic matter residue as a low cost adsorbent for aluminum. Journal of Environmental Management, 215, 91–99.

    Article  CAS  Google Scholar 

  • Sanchez, A. G., Ayuso, E. A., & Blas, O. J. (1999). Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Minerals, 34, 469–477.

    Article  CAS  Google Scholar 

  • Sekar, M., Sakthi, V., & Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 279, 307–313.

    Article  CAS  Google Scholar 

  • Shah, B., Mistry, C., & Shah, A. (2013). Seizure modeling of Pb(II) and Cd(II) from aqueous solution by chemically modified sugarcane bagasse fly ash: isotherms, kinetics, and column study. Environmental Science and Pollution Research, 20, 2193–2209.

    Article  CAS  Google Scholar 

  • Souza, S. O., Silva, M. M., Santos, J. C. C., Oliveira, L. C., Carmo, J. B., & Botero, W. G. (2016). Evaluation of different fractions of the organic matter of peat on tetracycline retention in environmental conditions: in vitro studies. Journal of Soils and Sediments, 16, 1764–1775.

    Article  CAS  Google Scholar 

  • Tatzber, M., Stemmer, M., Splegel, H., Katziberger, C., Haberhauer, G., Mentler, A., & Gerzabek, M. H. (2007). FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. Journal of Plant Nutrition and Soil Science, 170, 522–529.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88–116.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2018a). Learn about lead. https://www.epa.gov/lead/learn-about-lead. Accessed 16 July 2018.

  • U.S. EPA. (2018b). Basic information about lead in drinking water. https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water. Accessed 16 July 2018.

  • WHO – World Health Organization. (2018a). Lead poisoning and health. http://www.who.int/en/news-room/fact-sheets/detail/lead-poisoning-and-health. Accessed 24 July 2018.

  • WHO – World Health Organization. (2018b). Global overview of national regulations and standards for drinking-water quality. Geneva: World Health Organization Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  • Wolf, L. K. (2014). The crimes of lead. Chemical and Engineering News, 92, 27–29.

    Google Scholar 

  • Zhan, X., & Zhao, X. (2003). Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Research, 37, 3905–3912.

    Article  CAS  Google Scholar 

  • Zhang, G., Guo, X., Zhao, Z., He, Q., Wang, S., Zhu, Y., Yan, Y., Liu, X., Sun, K., Zhao, Y., & Qian, T. (2016). Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution, 218, 513–522.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by São Paulo Research Foundation (FAPESP) (grant number #2016/10796-5) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana C. Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, L.C., Botero, W.G., Farias, T.S. et al. Application of Natural Organic Residues as Adsorbents to Remove Lead from Waters. Water Air Soil Pollut 230, 191 (2019). https://doi.org/10.1007/s11270-019-4240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4240-8

Keywords

Navigation