Skip to main content
Log in

Study of the Operation of a Continuous Modular Bioreactor Used for Treatment of Wastewater from a Recycling Industry of by-Products from Slaughterhouses

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this paper was to present the operational performance of a bioreactor’s technology for treating wastewater from a recycling industry of by-products from slaughterhouses. In addition, it contributes to overcome the main disadvantages of treatment using Australian pond systems. The modular bioreactor described in this work consists of an alternative and innovative equipment that operates continuously on an industrial scale, which enables the treatment of liquid waste. The modular bioreactor was constructed of reinforced concrete with dimensions 70 m in length, 1.2 m in width, and 0.6 m in height, with an internal volume of 35,000 L, the process of wastewater degradation alternating between aerobic and anoxic conditions, being predominantly anoxic. The bioreactor was tested in two stages, by using this industrial wastewater. In the first stage, totaling 243 days, a primary effluent was added, consisting of high concentration of pollutants; and in a second stage, totaling 288 days, it was added a biologically pretreated effluent (after an anaerobic post-digestion process). The input-output parameters pH, turbidity, conductivity, temperature, and dissolved oxygen were monitored weekly, while total phosphorus, orthophosphate, total nitrogen, ammonium, nitrite, nitrate, total suspended solids, sedimented solids, oils and greases, COD, BOD, and alkalinity parameters were determined monthly. The bioreactor was promising in terms of pollutant removal efficiency, and partial nitrification may have occurred on a continuous scale in the first stage of the tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BOD:

biochemical oxygen demand

COD:

chemical oxygen demand

EPR:

effluent percolation rate

FMS:

fast mixing speed

OD:

dissolved oxygen

RMT:

rapid mixing time

SMS:

slow mixing speed

SMT:

slow mixing time

SS:

sedimented solids

TBD:

turbidity

TDM:

toxicity Daphnia magna

TF:

toxicity factor

THRT:

theoretical hydraulic retention time

TS:

total solids

TVF:

toxicity vibrio fischeri

WAPT:

wastewater after primary treatment

WAAD:

wastewater after anaerobic digestion

UASB:

upflow anaerobic sludge blanket

CODsection1:

COD parameter of section 1

CODsection11:

COD parameter of section 11

FR:

flow of the bioreactor

Psection1:

parameter in section 1

Psection11:

parameter in section 11

RR.COD:

COD removal rate

VB:

volume of the bioreactor

%Rem:

percentage of removal of the parameter

SD:

standard deviation

References

  • Al-Qodah, Z., & Shawabkah, R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering, 26(1), 127–136.

    Article  CAS  Google Scholar 

  • Andrade, L. H., Motta, G. E., & Amaral, M. C. S. (2013). Treatment of dairy wastewater with a membrane bioreactor. Brazilian Journal of Chemical Engineering, 30(4), 759–770.

    Article  CAS  Google Scholar 

  • APHA (1998) Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington DC: American Public Health Association, American Water Works Association and Water Environmental Federation.

  • APHA. (2012). Standard methods for the examination of water and wastewater. New York: Amecican Public Health Association.

    Google Scholar 

  • Ata, O. N., Kanca, A., Demir, Z., & Yigit, V. (2017). Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water, Air, and Soil Pollution, 228, 448. https://doi.org/10.1007/s11270-017-3629-5.

    Article  CAS  Google Scholar 

  • Boletim Climatológico Anual da Estação Meteorológica do IAG-USP (2010). Technical Section of the Meteorological Service. Institute for Astronomy, Geophysics and Atmospheric Sciences of the University of São Paulo, p 14.

  • Camargo, E. F. M., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Borzani, W. (2002). Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance. Brazilian Journal of Chemical Engineering, 19(3), 267–275.

    Article  CAS  Google Scholar 

  • Chang, J., Deng, S., Jia, W., Chen, P., Wang, Y., & Chen, J. (2018). Nitrogen removal performance and enzyme activities of baffled subsurface-flow constructed wetlands with macrophyte biomass addition. Water, Air, and Soil Pollution, 229, 182. https://doi.org/10.1007/s11270-018-3837-7.

    Article  CAS  Google Scholar 

  • Chao, I. R. S. (2006). Remoção de Fósforo de Efluentes de Estações de Tratamento Biológico de Esgotos Utilizando Lodo de Estação de Tratamento de Água. Master Thesis, Escola Politécnica of the University of São Paulo.

  • Chiavola, A., Romano, R., Bongirolami, S., & Giulioli, S. (2017). Optimization of energy consumption in the biological reactor of a wastewater treatment plant by means of oxy fuzzy and ORP control. Water, Air, and Soil Pollution, 228, 277. https://doi.org/10.1007/s11270-017-3462-x.

    Article  CAS  Google Scholar 

  • Da Motta, M., Pons, M. N., Vivier, H., Amaral, A. L., Ferreira, E. C., Roche, N., & Mota, M. (2001). The study of protozoa population in wastewater treatment plants by image analysis. Brazilian Journal of Chemical Engineering, 18(1), 103–111.

    Article  Google Scholar 

  • De Luis, A., & Lombraña, J. I. (2018). pH-based strategies for an efficient addition of H2O2 during ozonation to improve the mineralisation of two contaminants with different degradation resistances. Water Air Soil Pollution, 229, 372. https://doi.org/10.1007/s11270-018-4014-8.

    Article  CAS  Google Scholar 

  • De-Bashan, L. E., Hernandez, J. P., Morey, T., & Bashan, Y. (2004). Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research, 38(2), 466–474.

    Article  CAS  Google Scholar 

  • Ding, X., Zhao, J., Hu, B., Wang, S., Gao, K., & Zhao, R. (2019). Characteristics of N2O emission in distilled water and activated sludge mixture. Water Air Soil Pollution, 230, 31. https://doi.org/10.1007/s11270-019-4090-4.

    Article  CAS  Google Scholar 

  • Dominic, D., Amalraj, D., Sahu, S. S., Jambulingam, P., Boopathi Doss, P. S., Kalyanasundaram, M., & Das, P. K. (2000). Efficacy of aqueous suspension and granular formulations of bacillus thuringiensis (Vectobac) against mosquito vectors. Acta Tropical, 75(2), 243–246.

    Article  Google Scholar 

  • Freitas, D. C., Passig, F. H., Kreutz, C., Carvalho, K. Q., Arantes, E. J., & Gomes, S. D. (2017). Effect of hydraulic retention time on hydrodynamic behavior of anaerobic-aerobic fixed bed reactor treating cattle slaughterhouse effluent. Acta Scientiarum Technology, 39(4), 469–476.

    Article  Google Scholar 

  • Garbossa, L. H. P., Lapa, K. R., Zaiat, M., & Foresti, E. (2005). Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage. Brazilian Journal of Chemical Engineering, 22(4), 511–519.

    Article  CAS  Google Scholar 

  • Geraldino, H. C. L., Simionato, J. I., Freitas, T. K. F. S., Garcia, J. C., Carvalho Júnior, O., & Correr, C. J. (2015). Efficiency and operating cost of electrocoagulation system applied to the treatment of dairy industry wastewater. Acta Scientiarum Technology, 37(3), 401–408.

    Article  Google Scholar 

  • Godos, I. D., Vargas, V. A., Blanco, S., González, M. C. G., Soto, R., Garcia-Encina, P. A., Becares, E., Muñoz, R., & A. (2010). Comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresource Technology, 101(14), 5150–5158.

    Article  Google Scholar 

  • Gray, N. F. (2004). Biology of wastewater treatment. London: Imperial College Press.

    Book  Google Scholar 

  • Gruchlik, Y., Linge, K., & Joll, C. (2018). Removal of organic micropollutants in waste stabilisation ponds: a review. Journal of Environmental Management, 206, 202–214.

    Article  CAS  Google Scholar 

  • Hien, N. N., Tuan, D. V., Nhat, P. T., Van, T. T. T., Tam, N. V., Que, V. O. N. X., & Dan, N. P. (2017). Application of oxygen limited autotrophic nitritation/denitrification (OLAND) for anaerobic latex processing wastewater treatment. International Biodeterioration and Biodegradation, 124, 45–55.

    Article  Google Scholar 

  • Hoffmann, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.

    Article  CAS  Google Scholar 

  • Hong, W. T., Hagare, D., Modabber, K., & Fyfe, J. (2018). Phosphorus characterisation of sludge and crust produced by stabilisation ponds in a dairy manure management system. Water Air Soil Pollution, 229, 276. https://doi.org/10.1007/s11270-018-3912-0.

    Article  CAS  Google Scholar 

  • Hu, W. C., Thayanithy, K., & Forster, C. F. (2002). A kinetic study of the anaerobic digestion of ice-cream wastewater. Process Biochemistry, 37(9), 965–971.

    Article  CAS  Google Scholar 

  • Hudnell, H. K., Green, D., Vien, R., Butler, S., Rahe, G., Richards, B. A., & Bleth, J. (2011). Improving wastewater mixing and oxygenation efficiency with solar-powered circulation. Clean Technologies and Environmental Policy, 13(5), 731–742.

    Article  CAS  Google Scholar 

  • Keffala, C., Harerimana, C., & Vasel, J.-L. (2013). A review of the sustainable value and disposal techniques, wastewater stabilisation ponds sludge characteristics and accumulation. Environmental Monitoring and Assessment, 185(1), 45–58.

    Article  CAS  Google Scholar 

  • Kim, H. J., Won, C. H., & Kim, H. W. (2018). Pathogen deactivation of glow discharge cold plasma while treating organic and inorganic pollutants of slaughterhouse wastewater. Water, Air, and Soil Pollution, 229, 237. https://doi.org/10.1007/s11270-018-3895-x.

    Article  CAS  Google Scholar 

  • Koottatep, T., Suksiri, P., Pussayanavin, T., & Polprasert, C. (2018). Development of a novel multi-soil layer constructed wetland treating septic tank effluent with emphasis on organic and ammonia removals. Water Air Soil Pollution, 229, 258. https://doi.org/10.1007/s11270-018-3907-x.

    Article  CAS  Google Scholar 

  • Koren, D. W., Gould, W. D., & Bedard, P. (2000). Biological removal of Ammonia and nitrate from simulated mine and mill effluents. Hydrometallurg, 56(2), 127–144.

    Article  CAS  Google Scholar 

  • Kumar, D., & Asolekar, S. R. (2016). Significance of natural treatment systems to enhance reuse of treated effluent: a critical assessment. Ecological Engineering, 94, 225–237.

    Article  Google Scholar 

  • Liang, Y., Li, D., Su, Q., & Zhang, J. (2018). Performances and microbial characteristics of granular sludge for autotrophic nitrogen removal from synthetic and mainstream domestic sewage. Chemical Engineering Journal, 338, 564–571.

    Article  CAS  Google Scholar 

  • Louzeiro, N. R., Mavinic, D. S., Oldham, W. K., Meisen, A., & Gardner, I. S. (2002). Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor. Water Research, 36(11), 2721–2732.

    Article  CAS  Google Scholar 

  • Martínez, F. C., Cansino, A. T., Garcia, M. A. A., Kalashnikov, V., & Rojas, R. L. (2014). Mathematical analysis for the optimization of a design in a facultative pond: Indicator Organism and Organic Matter. Mathematical Problems in Engineering, 2014, Article ID 652509, 12. https://doi.org/10.1155/2014/652509.

    Article  Google Scholar 

  • Massé, D. I., Masse, L., Verville, A., & Bilodeau, S. (2001). The start-up of anaerobic sequencing batch reactors at 20° and 25°C for the treatment of slaughterhouse wastewater. Journal of Chemical Technology and Biotechnology, 76(4), 393–400.

    Article  Google Scholar 

  • Mburu, N., Tebitendwa, S. M., Van Bruggen, J. J. A., Rousseau, D. P. L., & Lens, P. N. L. (2013). Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works. Journal of Environmental Management, 128, 220–225.

    Article  CAS  Google Scholar 

  • Mees, J. B. R., Gomes, S. D., Hasan, S. D. M., Gomes, B. M., & Boas, M. A. V. (2014). Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon:nitrogen ratio and the cycle time. Environmental Technology, 35(1–4), 115–123.

    Article  CAS  Google Scholar 

  • Miranda, L. A. S., Henriques, J. A. P., & Monteggia, L. O. (2005). A full-scale UASB reactor for treatment of pig and cattle slaughterhouse wastewater with a high oil and grease content. Brazilian Journal of Chemical Engineering, 22(4), 601–610.

    Article  CAS  Google Scholar 

  • Mittal, G. S. (2006). Treatment of wastewater from abattoirs before land application – a review. Bioresource Technology, 97(9), 1119–1135.

    Article  CAS  Google Scholar 

  • Morejon, C. F. M., & Tonhato Junior, A. (2018). Brazilian Patent, BR 20 2018 002560 6, filed in 02/02/2018. In: Multifunctional Modular Pond for Treatment of Wastewater Based on Biotechnological Processes.

  • Oakley, S. M., Mendonça, L. C., & Mendonça, S. R. (2012). Sludge removal from primary wastewater stabilization ponds with excessive accumulation: a sustainable method for developing regions. Journal of Water Sanitation and Hygiene for Development, 2, 68–78.

    Article  Google Scholar 

  • Ogarekpe, N. M., & Agunwamba, J. C. (2016). Effect of geometry on the performance of integrated solar and hydraulic jump enhanced waste stabilization pond. Desalination and Water Treatment, 57(52), 24946–24959.

    Article  CAS  Google Scholar 

  • Orlowski, G. (2013). Factors affecting the use of waste-stabilization ponds by birds: a case study of conservation implications of a sewage farm in Europe. Ecological Engineering, 61, 436–445.

    Article  Google Scholar 

  • Oteng-Peprah, M., Acheampong, M. A., & de Vries, N. K. (2018). Greywater characteristics, treatment systems, reuse strategies and user perception—a review. Water Air Soil Pollut, 229, 255. https://doi.org/10.1007/s11270-018-3909-8.

    Article  CAS  Google Scholar 

  • Paramitadevi, Y. V., & Rahmatullah. (2017). Technical problems of wastewater treatment plant in crude palm oil industry: a case study in PT Socfin Indonesia-Kebun Sungai Liput, Nang Groe Aceh Darussalam Province, IOP Conference Series. Earth and Environmental Science, 65, 012048.

    Google Scholar 

  • Peng, Y., & Zhu, G. (2006). Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 73(1), 15–26.

    Article  CAS  Google Scholar 

  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, and Soil Pollution, 229, 115. https://doi.org/10.1007/s11270-018-3706-4.

    Article  CAS  Google Scholar 

  • Pereira, E. L., Campos, C. M. M., & Motteran, F. (2013). Physicochemical study of pH, alkalinity and total acidity in a system composed of anaerobic baffled reactor in series with upflow anaerobic sludge blanket reactor in the treatment of pig farming wastewater. Acta Scientiarum Technology, 35(3), 477–483.

    Google Scholar 

  • Racys, V., Dapkiene, M., Bikulciene, L., Jankunaite, D., & Vaiciukyniene, D. (2018). Effect of external carbon source on municipal wastewater at low temperatures. Water, Air, and Soil Pollution, 229, 210. https://doi.org/10.1007/s11270-018-3812-3.

    Article  CAS  Google Scholar 

  • Ramírez-Melgarejo, M., Gassó-Domingo, S., & Güereca, L. P. (2019). Evaluation of N2O emissions in wastewater treatment systems: a comparative analysis of emission between case studies of developed and developing countries. Water Air Soil Pollution, 230, 42. https://doi.org/10.1007/s11270-019-4086-0.

    Article  CAS  Google Scholar 

  • Reginatto, V., Teixeira, R. M., Pereira, F., Schmidell, W., Furigo, A., Jr., Menes, R., Etchebehere, C., & Soares, H. M. (2005). Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater. Brazilian Journal of Chemical Engineering, 22(4), 593–600.

    Article  CAS  Google Scholar 

  • Revilla, M., Galán, B., & Viguri, J. R. (2018). Optimization methodology for high COD nutrient-limited wastewaters treatment using BAS process. Water, Air, and Soil Pollution, 229, 191. https://doi.org/10.1007/s11270-018-3835-9.

    Article  CAS  Google Scholar 

  • Río, A. V., Silva, T. S., Martins, T. H., Foresti, E., Campos, J. L., & Méndez, R. (2017). Partial nitritation-anammox granules: short-term inhibitory effects of seven metals on anammox activity. Water Air Soil Pollut, 228, 439. https://doi.org/10.1007/s11270-017-3628-6.

    Article  CAS  Google Scholar 

  • Rodrigues, V. A. J., Mac Conell, E. F. A., Dias, D. F. C., Von Sperling, M., De Araújo, J. C., & Vasel, J. L. (2017). Nitrogen removal in a shallow maturation pond with sludge accumulated during 10 years of operation in Brazil. Water Science and Technology, 76(2), 268–278.

    Article  CAS  Google Scholar 

  • Ross, B. N., Loomis, G. W., Hoyt, K. P., & Amador, J. A. (2018). User-based photometer analysis of effluent from advanced nitrogen-removal onsite wastewater treatment systems. Water Air Soil Pollution, 229, 389. https://doi.org/10.1007/s11270-018-4039-z.

    Article  CAS  Google Scholar 

  • Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37(6), 1371–1377.

    Article  CAS  Google Scholar 

  • Safonova, E., Kvitko, K. V., Iankevitch, M. I., Surgko, L. F., Afti, I. A., & Reisser, W. (2004). Biotreatment of industrial wastewater by selected algal-bacterial consortia. Engineering in Life Sciences, 4(4), 347–353.

    Article  CAS  Google Scholar 

  • Salihoglu, G., Salihoglu, N. K., Ucaroglu, S., & Banar, M. (2018). Food loss and waste management in Turkey. Bioresource Technology, 248(A), 88–99.

    Article  CAS  Google Scholar 

  • Sayed, S., Van-Campen, L., & Lettinga, G. (1987). Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor. Biological Wastes, 21(1), 11–28.

    Article  CAS  Google Scholar 

  • Shalini, S. S., & Joseph, K. (2018). Combined SHARON and ANAMMOX processes for ammoniacal nitrogen stabilisation in landfill bioreactors. Bioresource Technology, 250, 723–732.

    Article  Google Scholar 

  • Shang, L., Xu, H., Huang, S., & Zhang, Y. (2018). Adsorption of ammonium in aqueous solutions by the modified biochar and its application as an effective N-fertilizer. Water Air Soil Pollution, 229, 320. https://doi.org/10.1007/s11270-018-3956-1.

    Article  CAS  Google Scholar 

  • Sliekers, A. O., Derwort, N., Gómez, J. L. C., Strous, M., Kuenen, J. G., & Jetten, M. S. M. (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 36(10), 2475–2482.

    Article  CAS  Google Scholar 

  • Sotomayor, O. A. Z., Park, S. W., & Garcia, C. (2001). A simulation benchmark to evaluate the performance of advanced control techniques in biological wastewater treatment plants. Brazilian Journal of Chemical Engineering, 18(1), 81–101.

    Article  CAS  Google Scholar 

  • Suneethi, S., & Joseph, K. (2011). Anammox process start up and stabilization with an anaerobic seed in anaerobic membrane bioreactor (AnMBR). Bioresource Technology, 102(19), 8860–8867.

    Article  CAS  Google Scholar 

  • Susuki, F. F. M., Bergamasko, R., Tavares, C. C. R., & Baldasso, T. (2012). Production and application of porous membrane for removal of contaminants in treated water. Acta Scientiarum Technology, 34, 421–425.

    Article  Google Scholar 

  • Suzin, L., Antes, F. G., Bedendo, G. C., Bortoli, M., & Kunz, A. (2018). Chemical removal of phosphorus from swine effluent: the impact of previous effluent treatment technologies on process efficiency. Water Air Soil Pollution, 229, 341. https://doi.org/10.1007/s11270-018-4018-4.

    Article  CAS  Google Scholar 

  • Swiatczak, P., & Cydzik-Kwiatkowska, A. (2018). Treatment of ammonium-rich digestate from methane fermentation using aerobic granular sludge. Water, Air, and Soil Pollution, 229, 247. https://doi.org/10.1007/s11270-018-3887-x.

    Article  CAS  Google Scholar 

  • Valverde, C. K., Moraes, L. C. K., Bongiovani, M. C., Camacho, F. P., & Bergamasco, R. (2013). Coagulation diagram using the Moringa Oleifera Lam and the aluminium sulphate, aiming the removal of color and turbidity of water. Acta Scientiarum Technology, 5, 485–489.

    Google Scholar 

  • Van Dongen, L. G. J. M., Jetten, M. S. M., & Van Loosdrechtl, M. C. M. (2001). The combined Sharon/Anammox process. London: IWA Publishing.

    Google Scholar 

  • Wang, M., & Zhang, H. (2017). Chemical oxygen demand and ammonia nitrogen removal in a non-saturated layer of a strengthened constructed rapid infiltration system. Water, Air, and Soil Pollution, 228, 440. https://doi.org/10.1007/s11270-017-3575-2.

    Article  CAS  Google Scholar 

  • Wang, D. B., Li, X. M., Yang, Q., Zeng, G. M., Liao, D. X., & Zhang, J. (2008). Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology, 99(13), 5466–5473.

    Article  CAS  Google Scholar 

  • Wilkie, A. C., Castro, H. F., Cubinski, K. R., Owens, J. M., & Yan, S. C. (2004). Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: wastewater production and characterisation. Biosystems Engineering, 89, 457–471.

    Article  Google Scholar 

  • Xing, L., Ou, L., Zhang, Y., Zheng, D., & Wu, G. (2017). Nitrogen removal and N2O emission during low carbon wastewater treatment using the multiple A/O process. Water, Air, and Soil Pollution, 228, 367. https://doi.org/10.1007/s11270-017-3446-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the industry FARICON AGRÍCOLA LTDA which contributed to the research.

To CAPES for access to the SCOPUS database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcides Tonhato Junior.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonhato Junior, A., Morejon, C.F.M. & Hasan, S.D.M. Study of the Operation of a Continuous Modular Bioreactor Used for Treatment of Wastewater from a Recycling Industry of by-Products from Slaughterhouses. Water Air Soil Pollut 230, 82 (2019). https://doi.org/10.1007/s11270-019-4133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4133-x

Keywords

Navigation