Skip to main content
Log in

Biological nitrogen removal with nitrification and denitrification via nitrite pathway

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Presently, the wastewater treatment practices can be significantly improved through the introduction of new microbial treatment technologies. To meet increasingly stringent discharge standards, new applications and control strategies for the sustainable removal of ammonium from wastewater have to be implemented. Partial nitrification to nitrite was reported to be technically feasible and economically favorable, especially when wastewater with high ammonium concentrations or low C/N ratios is treated. For successful implementation of the technology, the critical point is how to maintain partial nitrification of ammonium to nitrite. Partial nitrification can be obtained by selectively inhibiting nitrite oxidizing bacteria through appropriate regulation of the system’s DO concentration, microbial SRT, pH, temperature, substrate concentration and load, operational and aeration pattern, and inhibitor. The review addressed the microbiology, its consequences for their application, the current status regarding application, and the future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abeling U, Seyfried CF (1992) Anaerobic–aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite. Water Sci Technol 26:1007–1015

    CAS  Google Scholar 

  • Al-Ghusain IA, Hao OJ (1995) Use of pH as control parameter for aerobic/anaerobic sludge digestion. J Environ Eng 121(3):225–235

    CAS  Google Scholar 

  • Almeida JS, Reis MAM, Carrondo MJT (1995) Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46(5):476–484

    CAS  PubMed  Google Scholar 

  • Anthonisen AC (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48(5):835–852

    CAS  PubMed  Google Scholar 

  • Barak Y, Tal Y, van Rijn J (2000) Relationship between nitrite reduction and active phosphate uptake in the phosphate accumulating dentrifier Pseudomonas sp. strain JR 12. Appl Environ Microbiol 66(12):5236–5240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann B, Snozzi M, Van der Meer JR, Zehder AJB (1997) Development of stable denitrifying cultures during repeated aerobic–anaerobic transient periods. Water Res 31:1947–1954

    CAS  Google Scholar 

  • Beccari M, Marani E, Ramadori R, Tandoi V (1983) Kinetic of dissimilatory nitrate and nitrite reduction in suspended growth culture. J Water Pollut Control Fed 55:58–64

    CAS  Google Scholar 

  • Belser LW, Mays EL (1980) Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl Environ Microbiol 39:505–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bock E, Koops HP, Harms H (1986) Cell biology of nitrifying bacteria. In: Prosser JI (ed) Nitrification. IRL, Oxford, pp 17–38

    Google Scholar 

  • Bonin P (1996) Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: a dissimilatory pathway. FEMS Microbiol Ecol 19(1):27–38

    CAS  Google Scholar 

  • Brouwer M, van Loosdrecht MCM, Heijnen JJ (1996) One reactor system for ammonium removal via nitrite. STOWA Report. 96–01. STOWA, Utrecht, The Netherlands. (ISBN 90 74476 55 4)

  • Camilla G, Gunnel D (2001) Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res 35(2):433–440

    Google Scholar 

  • Camilla G, Lena G, Gunnel D (1998) Comparison of inhibition assays using nitrogen removing bacteria: application to industrial wastewater. Water Res 32(10):2995–3000

    Google Scholar 

  • Castignetti D, Gunner HB (1982) Differential tolerance of hydroxylamine by an Alcaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis. Can J Microbiol 28:148–150

    CAS  Google Scholar 

  • Ciudad G, Rubilar O, Muòoz P, Ruiz G, Chamy R, Vergara C, Jeison D (2005) Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochem 40:1715–1719

    CAS  Google Scholar 

  • Cotteux E, Duchene P (2003) Nitrification preservation in activated sludge during curative bulking chlorination. Water Sci Technol 47(11):85–92

    CAS  PubMed  Google Scholar 

  • Eilersen AM, Henze M, Kloft L (1994) Effect of volatile fatty acids and trimethylamine on nitrification in activated sludge. Water Res 28(6):1329–1336

    CAS  Google Scholar 

  • Eilersen AM, Henze M, Kloft L (1995) Effect of volatile fatty acids and trimethylamine on denitrification in activated sludge. Water Res 29(5):1259–1266

    CAS  Google Scholar 

  • EPA (1993) Process design manual for nitrogen control. US EPA, Washington, DC

    Google Scholar 

  • Fdz-Polanco F, Villaverde S, Garcia PA (1994) Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Water Sci Technol 30(11):121–130

    CAS  Google Scholar 

  • Fdz-Polanco F, Villaverde S, Garcia PA (1996) Nitrite accumulation in submerged biofilters-combined effects. Water Sci Technol 34(3–4):371–378

    CAS  Google Scholar 

  • Ferhan C (1996) Investigation of partial and full nitrification characteristics of fertilizer wastewaters in a submerged biofilm reactor. Water Sci Technol 34(11):77–85

    Google Scholar 

  • Ford DL, Churchwel RL, Kachtick JW (1980) Comprehensive analysis of nitrification of chemical processing wastewaters. J Water Pollut Control Fed 52:2726–2746

    CAS  Google Scholar 

  • Garrido JM (1998) Nitrous oxide production under toxic conditions in a denitrifying anoxic filter. Water Res 32(8):2550–2552

    CAS  Google Scholar 

  • Garrido JM, van Benthem W, van Loosdrecht MCM, Heijnen JJ (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng 53:168–178

    CAS  PubMed  Google Scholar 

  • Glass C, Silverstein J, Oh J (1997) Inhibition of denitrification in activated sludge by nitrite. Water Environ Res 69(6):1086–1093

    CAS  Google Scholar 

  • Han DW, Chang JS, Kim DJ (2003) Nitrifying microbial community analysis of nitrite accumulating biofilm reactor by fluorescence in situ hybridization. Water Sci Technol 47(1):97–104

    CAS  PubMed  Google Scholar 

  • Hao OJ, Chen JM (1994) Factors affecting nitrite buildup in submerged filter system. J Environ Eng 120(5):1298–1307

    CAS  Google Scholar 

  • Head IM, Hiorns WD, Embley TM, McCarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene-sequences. J Gen Microbiol 139:1147–1153

    CAS  PubMed  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater. Water Sci Technol 37(9):135–142

    CAS  Google Scholar 

  • Hidaka T, Yamada H, Kawamura M, Tsuno H (2002) Effect of dissolved oxygen conditions on nitrogen removal in continuously fed intermittent-aeration process with two tanks. Water Sci Technol 45:181–188

    CAS  PubMed  Google Scholar 

  • Hu SS (1990) Acute substrate-intermediate-product related inhibition of nitrifiers. M.S. Thesis. School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA

  • Khin Than, Annachhatre Ajit P (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22:519–532

    Google Scholar 

  • Kornaros M, Zafiri C, Lyberatos G (1996) Kinetics of denitrification by Pseudomonas denitrificans under growth conditions limited by carbon and/or nitrate or nitrite. Water Environ Res 68:934–945

    CAS  Google Scholar 

  • Laanbrock HJ, Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradsky grown in mixed continuous cultures. Arch Microbiol 159:453–459

    Google Scholar 

  • Lees H, Quastel JH (1945) Bacteriostatic effects of potassium chlorate on soil nitrification. Nature 155:276–278

    CAS  Google Scholar 

  • Lipponen MTT, Martikainen PJ, Vasara RE, Servomaa K, Zacheus O, Kontro MH (2004) Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms. Water Res 38:4424–4434

    CAS  PubMed  Google Scholar 

  • Logemann S, Schantle J, Bijvank S, van Loosdrecht M, Kuenen JG, Jetten M (1998) Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiol Ecol 27:239–249

    CAS  Google Scholar 

  • López-Fiuzaa J, Buysb B, Mosquera-Corrala A, Omil CF, Méndeza R (2002) Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory. Enzyme Microb Technol 31(7):976–985

    Google Scholar 

  • Mulder JW, van Loosdrecht MCM, Hellinga C, van Kempen R (2001) Full-scale application of the SHARON process for the treatment of rejection water of digested sludge dewatering. Water Sci Technol 43(11):127–134

    CAS  PubMed  Google Scholar 

  • Neufeld R, Greenfield J, Rieder B (1986) Temperature, cyanide and phenolic nitrification inhibition. Water Res 20(5):633–642

    CAS  Google Scholar 

  • Nowak O, Svardal K, Kroiss H (1996) The impact of phosphorus deficiency on nitrification-case study of a biological pretreatment plant for rendering plant effluent. Water Sci Technol 34(1–2):229–236

    CAS  Google Scholar 

  • Okabe S, Ozawa Y, Hirata K, Watanabe Y (1996) Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Res 30(7):1563–1577

    CAS  Google Scholar 

  • Peng YZ, Chen T, Tian WJ (2003a) Nitrogen removal via nitrite at normal temperature in A/O process. J Environ Sci Health, Part A, Environ Sci Eng 39(7):1667–1680

    Google Scholar 

  • Peng YZ, Gao JF, Wang SY, Sui MH (2003b) Use of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process. Water Sci Technol 47(11):77–85

    CAS  PubMed  Google Scholar 

  • Peng YZ, Chen Y, Peng CY, Liu M, Wang SY, Song XQ, Cui YW (2004a) Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater. Water Sci Technol 50(10):35–43

    CAS  PubMed  Google Scholar 

  • Peng YZ, Li YZ, Peng CY, Wang SY (2004b) Nitrogen removal from pharmaceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification. Water Sci Technol 50(6):31–36

    CAS  PubMed  Google Scholar 

  • Peng YZ, Song XQ, Peng CY, Li J, Chen Y (2004c) Biological nitrogen removal in SBR bypassing nitrate generation accomplished by chlorination and aeration time control. Water Sci Technol 49(5/6):295–300

    CAS  PubMed  Google Scholar 

  • Peng YZ, Zhu GB, Wang SY, Yu DS, Cui YW, Meng XS (2005) Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature. Water Sci Technol 52(10–11):129–137

    CAS  PubMed  Google Scholar 

  • Philips S, Laanbrock HJ, Verstraete W (2002) Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Bio/Technology 1:115–141

    CAS  Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1997) Modelling of the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol 36:147–156

    CAS  Google Scholar 

  • Pollice A, Tandoi V, Lestingi C (2002a) Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res 36(10):2541–2546

    CAS  PubMed  Google Scholar 

  • Pollice A, Valter T, Carmela L (2002b) Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res 36:2541–2546

    CAS  PubMed  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176(21):6623–6630

    Google Scholar 

  • Regan JM, Harrington GW, Noguera DR (2002) Ammonia- and nitrite-oxidizing bacterial communities in a pilot scale chloraminated drinking water distribution system. Appl Environ Microbiol 68(1):73–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rottenberg H (1990) Decoupling of oxidative phosphorylation and photo-phosphorylation. Biochim Biophys Acta 1018:1–17

    CAS  PubMed  Google Scholar 

  • Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37(6):1371–1377

    CAS  PubMed  Google Scholar 

  • Sijbesma WFH, Almeida JS, Reis MAM, Santos H (1996) Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: an in vivo 31P-NMR study. Biotechnol Bioeng 52:176–182

    CAS  PubMed  Google Scholar 

  • Sliegrist H, Reithaar S, Lais P (1998) Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon. Water Sci Technol 37(4–5):589–591

    Google Scholar 

  • Stein LY, Arp DJ (1998) Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64(10):4098–4102

    CAS  PubMed  PubMed Central  Google Scholar 

  • STOWA (1995) Treatment of nitrogen rich return flows of sewage treatment plants. Evaluation of Dutch pilot plant research projects (in Dutch). STOWA report, pp 95–08

  • Stüven R, Vollmer M, Bock E (1992) The impact of organic matter on nitric oxide formation by Nitrosomonaseuropaea. Arch Microbiol 158:39–44

    Google Scholar 

  • Surmacz-Gorska J, Cichon A, Miksch K (1997) Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Water Sci Technol 36(10):73–78

    CAS  Google Scholar 

  • Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 176(21):6623–6630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timothy AH, Edward FD (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl Environ Microbiol (62):2888–2896

    Google Scholar 

  • Tonkovic Z (1998) Nitrite accumulation at the Mornington sewage treatment plant—causes and significance (pp 165–172). 19th Biennial International Conference, Water Quality International 1998. IAWQ, Vancouver, Canada

    Google Scholar 

  • Turk O, Mavinic DS (1987) Benefits of using selective inhibition to remove nitrogen from highly nitrogenous wastes. Environ Technol Lett 8:419–426

    CAS  Google Scholar 

  • van Dongen U, Jetten MSM, van Loosdrecht MCM (2001) The SHARON-ANAMMOX process for treatment of ammonium rich wastewater. Water Sci Technol 44:53–60

    Google Scholar 

  • van Kempen R, Mulder JW, Uijterllnde CA, van Loosdrecht MCM (2001) Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 44:145–152

    PubMed  Google Scholar 

  • van Rijn J, Tal Y, Barak Y (1996) Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor. Environ Microbiol 62:2615–2620

    Google Scholar 

  • Verstraete W, Philips S (1998) Nitrification–denitrification processes and technologies in new contexts. Environ Pollut 102(S1):717–726

    CAS  Google Scholar 

  • Wang SY, Gao DW, Peng YZ, Wang P, Yang Q (2004) Nitrification-denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control. Water Sci Technol 49(5–6):121–127

    CAS  PubMed  Google Scholar 

  • Wheaton FW, Hochheimer JN, Kaiser GE, Kronos MJ, Libey GS, Easter CC (1994) Nitrification filter principles. In: Timmons MB, Losordo TM (eds) Aquaculture water reuse systems: engineering design and management. Elsevier, Amsterdam, pp 101–126

    Google Scholar 

  • Wild D, Von Schulthess R, Gujer W (1995) Structured modeling of denitrification intermediates. Water Sci Technol 31:45–54

    CAS  Google Scholar 

  • Wong-Chong GM, Loehr RC (1978) Kinetics of microbial nitrification: nitrite-nitrogen oxidation. Water Res 12:605–609

    CAS  Google Scholar 

  • Wyffels S, van Hulle SWH, Boeckx P, Volcke EIP, van Cleemput O, van Rolleghem PA, Verstraete W (2004) Modelling and simulation of oxygen-limited partial nitritafition in a membrane-assisted bioreactor (MBR). Biotechnol Bioeng 86:531–542

    CAS  PubMed  Google Scholar 

  • Yang L, Alleman JE (1992) Investigation of batchwise nitrite build-up by an enriched nitrification culture. Water Sci Technol 26(5–6):997–1005

    CAS  Google Scholar 

  • Yang Q, Wang SY, Yang AM, Guo JH, Bo FY, Peng YZ (2006) Advanced nitrogen removal using pilot-scale SBR with intelligent control system built on three layer network. Acta Scientiae Circumstantiae 26(5):745–750

    Google Scholar 

  • Yoo HS, Ann KH, Lee HJ, Lee KH, Kwak YJ, Song KG (1999) Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor. Water Res 33(1):145–154

    CAS  Google Scholar 

  • Zeng W, Yang Q, Zhang SJ, Ma Y, Liu XH, Peng YZ (2006) Analysis of nitrifying bacteria in short-cut nitrification–denitrification processes by using Fish, PCR-DGGE and Cloning. Acta Scientiae Circumstantiae 26(5):734–739

    CAS  Google Scholar 

  • Zhang SY, Wang JS, Jiang ZC, Chen MX (2000) Nitrite accumulation in an attapulgas clay biofilm reactor by fulvic acids. Bioresour Technol 73:91–93

    Google Scholar 

  • Zheng P, Xu XL, Hu BL (2004) Novel theories and technologies of biological nitrogen removal. Science, Beijing

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation Key International Cooperation project of China (No. 50521140075), National Hi-Tech Development Program “863” project (No. 2004AA601020), and the National Natural Science Foundation (20377003). Give special thanks to Mr. Guo Jianhua for his help in English checking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guibing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Zhu, G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73, 15–26 (2006). https://doi.org/10.1007/s00253-006-0534-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0534-z

Keywords

Navigation