Skip to main content
Log in

A critical review of conventional and emerging wastewater treatment technologies

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Water stress is a major concern in today’s world as many cities worldwide face fast depleting potable water supply. The prevailing water emergency warrants a conscious effort to reuse mitigated wastewater such that the use of residual natural reserves is limited to drinking purposes only. To accomplish adequate wastewater remediation, the greatest challenge, apart from policy and implementation fronts, lies in maximizing the overall efficiency of wastewater treatment (WWT) systems. In light of this, the current review makes a unique effort to help navigate the challenge by summarizing the present scenario of WWT technologies, focusing on the progress so far and the prospects in the next 30 years or so. The study comprehensively reviews various wastewater technologies and aims to help countries, like India, deal with the obstacles encountered while selecting and engineering suitable systems. It compares them based on their advantages and disadvantages, including budget allocation and timeframe for installing and commission of the treatment plants. Depending upon the wastewater characteristics and the expected end-use of treated wastewater, a comprehensive survey of prevalent aerobic, anaerobic, and biological treatment techniques has been done. Emerging WWT technologies, such as advanced oxidation processes, membrane filtration techniques, microbial electrolysis cell technologies, and in situ methods, which are currently in the development and deployment stages, have also been discussed. The study outlines the scope, limitations, and advancements of existing and prospective wastewater remediation approaches and suggests their decentralized implementation at the community scale as stop-gap solutions to poor wastewater management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

 The datasets analysed during the current study are available in https://nmcg.nic.in/writereaddata/fileupload/16_31_003_EQP_S&R_02.pdf.

Abbreviations

AOPs:

Advanced oxidation processes

ASP:

Activated sludge process

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

CW:

Constructed wetland

DOC:

Dissolved organic carbon

EGSB:

Expanded granular sludge bed reactor

FBB:

Fluidized bed bioreactor

FC:

Freeze concentration

FFB:

Fixed-film bioreactor

HRT:

Hydraulic retention time

MBBR:

Moving bed bioreactor

MBR:

Membrane bioreactor

MEC:

Microbial electrolysis cell

RBC:

Rotating biological contactor

SBR:

Sequencing batch reactor

TDS:

Total dissolved solids

TF:

Trickling filter

TSS:

Total suspended solids

UASB:

Upflow anaerobic sludge blanket

WSP:

Waste stabilization pond

WWT:

Wastewater treatment

References

  • Abeliovich A (1985) Biological treatment of chemical industry effluent by stabilization ponds. Water Res 19(12):1497–1503

    Article  Google Scholar 

  • Ahansazan B, Afrashteh H, Ahansazan N, Ahansazan Z (2014) Activated sludge process overview. Int J Environ Sci Dev 5(1):81–85

    Google Scholar 

  • Ahn YT, Kang ST, Chae SR, Lee CY, Bae BU, Shin HS (2007) Simultaneous high-strength organic and nitrogen removal with combined anaerobic upflow bed filter and aerobic membrane bioreactor. Desalination 202(2007):114–121

    Article  Google Scholar 

  • Alleman JE, Prakasam TBS (1983) Reflections on seven decades of activated sludge history. J Water Pollut Control Fed 55(5):436–443. http://www.jstor.org/stable/25041901

  • Bachmann A, Beard VL, McCarty PL (1985) Performance characteristics of the anaerobic baffled reactor. Water Res 19(1):99–106

  • Bajpai P (2017) Emerging technologies for wastewater treatment. Pulp Pap Ind. https://doi.org/10.1016/b978-0-12-811099-7.00007-1

    Article  Google Scholar 

  • Baker BH, Aldridge CA, Omer A (2016).Water: availability and use. Mississippi State University Extension. http://extension.msstate.edu/publications/water-availability-and-use

  • Balcioglu IA, Alaton IA, Otker M, Bahar R, Bakar N, Ikiz M (2003) Application of advanced oxidation processes to different industrial wastewaters. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 38(8):1587–1596

    Article  Google Scholar 

  • Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Wat Res 33:1559–1578

    Article  Google Scholar 

  • Barnard JL (1975) Biological nutrient removal without the addition of chemicals. Water Res 9(5–6):485–490. https://doi.org/10.1016/0043-1354(75)90072-X

    Article  Google Scholar 

  • Bethi B, Sonawane SH, Bhanvase BA, Gumfekar SP (2016) Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem Eng Process 109:178–189

    Article  Google Scholar 

  • Beychok MR (1971) Performance of surface-aerated basins. Chem Eng Prog Symp Ser 67(107):322–339

    Google Scholar 

  • Bhargava A (2016) Activated sludge treatment process—concept and system design. Int J Eng Dev Res 4(2):2321–9939

    Google Scholar 

  • Bherwani H, Musugu K, Nair M, Gupta A, Kumar R (2022) Valuation of environmental damages of Kasardi River: a case for benefits of timely action. Proc Indian Natl Sci Acad. 88:80–89. https://doi.org/10.1007/s43538-022-00068-3

    Article  Google Scholar 

  • Bieby VT, Siti RSA, Hassan B, Mushrifah I, Nurina A, Muhammad MA (2011) Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Biggs C, Lant P, Hounslow M (2003) Modelling the effect of shear history on activated sludge flocculation. Water Sci Technol 47(11):251–257

    Article  Google Scholar 

  • Bijan L, Mohseni M (2004) Using ozone to reduce recalcitrant compounds and to enhance the biodegradability of pulp and paper effluents. Water Sci Technol 50(3):173–182

    Article  Google Scholar 

  • BIOROCK plants. https://biorock.com/

  • Bruce EL, Slawomir WH, Denny SP (1987) A fundamental model for trickling filter process design. J Water Pollut Control Fed 59(12):1029–1042

    Google Scholar 

  • Butler E, Hung YT, Al Ahmad MS, Yeh RYL, Liu RLH, Fu YP (2017) Oxidation pond for municipal wastewater treatment. Appl Water Sci 7(1):31–51. https://doi.org/10.1007/s13201-015-0285-z

    Article  Google Scholar 

  • Campos JL, Otero L, Franco A, Mosquera-Corral A, Roca E (2009) Ozonation strategies to reduce sludge production of a seafood industry WWTP. Bioresour Technol 100(2009):1069–1073

    Article  Google Scholar 

  • Carter CR, Tyrrel SF, Howsam P (1999) Impact and sustainability of community water supply and sanitation programs in developing countries. J Chart Inst Water Environ Manag 13:292–296

    Article  Google Scholar 

  • Central Pollution Control Board (CPCB) (2021) "National Inventory of Sewage Treatment Plants" https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg Accessed Jan 2022

  • Chahal C, Van Den Akker B, Young F, Franco C, Blackbeard J, Monis P (2016) Pathogen and particle associations in wastewater: significance and implications for treatment and disinfection processes. Adv Appl Microbiol 97:63–119. https://doi.org/10.1016/bs.aambs.2016.08.001

    Article  Google Scholar 

  • Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on the anaerobic-aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1–18

    Article  Google Scholar 

  • Chemtech International (2020) Activated sludge systems-advantages and disadvantages

  • Chernicharo CAL, Nascimento MCP (2001) Feasibility of pilot-scale UASB/trickling filter system for domestic sewage treatment. Water Sci Technol 44(4):221–228. https://doi.org/10.2166/wst.2001.0227

    Article  Google Scholar 

  • Cooper PF (2007) Historical aspects of wastewater treatment. Decentralised sanitation and reuse: concepts, systems and implementation. IWA Publishing, London

    Google Scholar 

  • Damania R, Desbureaux S, Rodella A, Russ J, Zaveri E (2019) Quality unknown: the invisible water crisis. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/32245

  • Daud MK, Rizvi H, Akram MF, Ali S, Rizwan M, Nafees M, Jin ZS (2018) Review of upflow anaerobic sludge blanket reactor technology: effect of different parameters and developments for domestic wastewater treatment. J Chem 2018:1–13

    Google Scholar 

  • Del Pozo R, Diez V (2003) Organic matter removal in combined anaerobic-aerobic fixed-film bioreactors. Water Res 37(2003):3561–3568

    Article  Google Scholar 

  • Dey J, Sakhre S, Vijay R, Bherwani H, Kumar R (2021) Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India. Environ Dev Sustain 23(3):3543–3561. https://doi.org/10.1007/s10668-020-00731-z

    Article  Google Scholar 

  • Dhokpande SR, Kulkarni SJ, Kaware JP (2014) A review on research on the application of trickling filter in the removal of various pollutants from effluent. Int J Eng Sci Res Technol 3(7):359–365

    Google Scholar 

  • Dhote J, Ingole S, Chavhan A (2012) Review on wastewater treatment technologies. Int J Eng Res Technol 1:1–10

    Google Scholar 

  • Dimitrakos GM, Nieva JM, Vayenas DV, Lyberatos GL (1996) Removal of iron from potable water using trickling filter. Wat Res 31(5):991–996

    Google Scholar 

  • Ditzig JLH, Logan BE (2007) Production of hydrogen from domestic wastewater using a bio electrochemically assisted microbial reactor (BEAMR). Int J Hydro Energy 32:2296–2304

    Article  Google Scholar 

  • Dohare D, Kawale M (2014) Biological treatment of wastewater using activated sludge process and sequential batch reactor process: a review. Int J Eng Sci Res Technol 251:2277–9655

    Google Scholar 

  • Dorabaltea, BIWATER. https://www.dorabaltea.com/en/soluzioni/biowater/

  • Downing AL, Hopwood AP (1964) Some observations on the kinetics of nitrifying activated-sludge plants. Schweiz Z Hydrol 26(2):271–288. https://doi.org/10.1007/BF02504050

    Article  Google Scholar 

  • Dutta A, Charlotte D, David SI (2018) Performance of upflow anaerobic sludge blanket (UASB) reactor and other anaerobic reactor configuration for wastewater treatment: a comprehensive review and critical updates. J Water Supply Res Technol 67:858–884

    Article  Google Scholar 

  • Elizabeth PS (2005) Phytoremediation. Annu Rev Plant Biol 2005(56):15–39

    Google Scholar 

  • Enegess D, Togna A, Sutton P (2003) Membrane separation applications to biosystems for waste water treatment. Filtr Sep 40:14–17

    Article  Google Scholar 

  • Erakhrumen A, Agbontalor A (2007) Review phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156

    Google Scholar 

  • Escapa A, San-Martín MI, Mateos R, Morán A (2015) Scaling-up of membrane-less microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Biores Technol 180:72–78

    Article  Google Scholar 

  • Escapa A, Mateos R, Martínez EJ, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55:942–956

    Article  Google Scholar 

  • Fernandes H, Mariele KJ, Heike H, Regina VA, Rejane HR (2013) Full-scale sequencing batch reactor (SBR) for domestic wastewater: performance and diversity of microbial communities. Bioresour Technol 132(2013):262–268

    Article  Google Scholar 

  • Ghaniyari BS, Borja R, Monemian SA, Goodarzi V (2009) Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor. Bioresour Technol 100(2009):1740–1745

    Article  Google Scholar 

  • Ghawi AH, Kris J (2009) Use of the rotating biological contactor for appropriate technology wastewater treatment. Slovak J Civ Eng 2009(3):1–8

    Google Scholar 

  • Ghodeif K (2013) Baseline Assessment Study for Wastewater Treatment Plant for Al Gozayyera village, West Kantara City, Ismailia Governorate, Egypt. SWIM-Sustain Water MED - Egypt. https://doi.org/10.13140/RG.2.2.34897.63844

  • Glaze WH (1987) Drinking water treatment with ozone. Environ Sci Technol 21:224–230

  • Gratziou MK, Tsalkatidou M, Kotsovinos NE (2006) Economic evaluation of small capacity sewage processing Units. Glob NEST J 8(1):52–60

    Google Scholar 

  • Grobicki A, Stuckey DC (1991) Performance of the anaerobic baffled reactor under steady-state and shock-loading conditions. Biotechnol Bioeng 37(4):344–355. https://doi.org/10.1002/bit.260370408

    Article  Google Scholar 

  • Gros M, Petrovic M, Ginebrada A, Barcelo D (2010) Removal of pharmaceutical during wastewater treatment and environmental assessment using hazard indexes. Environ Int 36(2010):15–26

    Article  Google Scholar 

  • Guessous M, Richa A, Mountadar S, Karmil FZ, El Hajric J, Mountadarb M, Sinitia M (2021) Experimental study of wastewater treatment containing sulfuric acid solutions using freezing and thawing method. Desalination Water Treat. https://doi.org/10.5004/dwt.2021.26606

    Article  Google Scholar 

  • Guo WQ, Yang SS, Xiang WS, Wang XJ, Ren NQ (2013) Minimization of excess sludge production by in-situ activated sludge treatment processes—a comprehensive review. Biotechnol Adv 31(8):1386–1396

    Article  Google Scholar 

  • Hassan SR, Haider MZ, Dahlan I (2013) Development of the anaerobic reactor for industrial wastewater treatment: An overview, present stage, and future aspects. Dahlan et al, J Adv Sci Res, 4(1): 07-12. https://www.environmentalpollution.in/sewage-treatment/aerated-lagoons/aerated-lagoons-types-and-advantages-sewage-treatment/5788

  • Jafarinejad S (2016) Petroleum waste treatment and pollution control, 1st edn. Elsevier Inc., Butterworth-Heinemann

    Google Scholar 

  • James EA, Prakasam TBS (1983) Reflection on seven decades of activated sludge history. J Water Pollut Control Fed 55(5):436–443

    Google Scholar 

  • Jamil TS, Ghaly MY, El-Seesy IE, Souaya ER, Nasr RA (2011) A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. J Hazard Mater 185:353–358

    Article  Google Scholar 

  • John RH, Daigger GT (1987) A comparison of trickling filter media. J Water Pollut Control Fed 59(7):679–685

    Google Scholar 

  • Judd S (2010) The MBR Book: principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier, New York

    Google Scholar 

  • Jusoh M, Johari A, Ngadi N, Zakaria ZY (2013) Process optimization of effective partition constant in progressive freeze concentration of wastewater. Adv Chem Eng Sci. https://doi.org/10.4236/aces.2013.34036

    Article  Google Scholar 

  • Kalyuzhnyi SV, Vyacheslav V, Fedorovich PL (2005) Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics. J Ind Microbiol Biotechnol 33:221–237

    Article  Google Scholar 

  • Karadag D, Koroglu EO, Ozkaya B, Cakmakci M (2014) A review on anaerobic biofilm reactor for the treatment of dairy industry wastewater. Process Biochem 50:262–271

    Article  Google Scholar 

  • Kassam ZA, Yerushalmi L, Guiot SR (2003) A market study on the anaerobic waste-water treatment systems. Water Air Soil Pollut 143(1–4):179–192

    Article  Google Scholar 

  • Kayombo S, Mbwette TSA, Katima JHY, Ladegaard N, Jorgensen SE (2010) Waste stabilization ponds and constructed wetland design manual. Danish University of pharmaceutical science, a section of environmental chemistry, Copenhagen, Denmark

  • Kazemi K, Hashemian J, Alavi AN, Yaghoubkhani S (2012) COD removal performance of fluidized bed bioreactor (FBBR) with support material of precipitation carbonate calcium (PCC). J Civ Eng Sci 2012–1:31–35

    Google Scholar 

  • Khaled S, Azni I, Omar R, Hamdan MY (2014) A review in biofilm process for wastewater treatment. Life Sci J 11(11):1–13

    Google Scholar 

  • Khalil N, Sinha R, Raghav AK, Mittal AK (2008) UASB technology for sewage treatment in India: experience, economic evaluation, and it's potential in other developing countries. Proceedings of the Twelfth International Water Technology Conference, IWCT 12, Alexandria, pp 1411–1427

  • Khan NA, Hussain A, Changani F, Hussain K (2017) Review on SBR (Sequencing batch reactor) treatment technologies of industrial wastewater. J Emerg Trends Model Manuf 3(4):87–91

    Google Scholar 

  • Latif MA, Ghufran R, Wahid ZA, Ahmad A (2011) Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Res 45(16):4683–4699. https://doi.org/10.1016/j.watres.2011.05.049

    Article  Google Scholar 

  • Lee CC (2000) Handbook of environmental engineering calculations, 1st edn. McGraw Hill, New York (ISBN 0-07-038183-6)

    Google Scholar 

  • Lettinga G, Velsen AFMV, Hobma SWW, Zeeuw DE, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  Google Scholar 

  • Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. J Water Pollut Control Fed 37:800–821

    Google Scholar 

  • Lier JB, Van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-015-9375-5

    Article  Google Scholar 

  • Lim SJ, Kim TH (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202. https://doi.org/10.1016/j.biombioe.2013.11.011

    Article  Google Scholar 

  • Lin K-C, Yang Z (1990) Technical review on the UASB process. Int J Environ Stud 39:203–222

    Article  Google Scholar 

  • Liu Yu, Liu Q-S (2006) Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactor. Biotechnol Adv 24(2006):115–212

    Article  Google Scholar 

  • Lofrano G, Brown J (2010) Wastewater management through the ages: a history of mankind. Sci Total Environ 408(22):5254–5264. https://doi.org/10.1016/j.scitotenv.2010.07.062

    Article  Google Scholar 

  • Lucas S, Zeeman G, Jules B, Van L, Hamelers HVM, Lettinga G (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(1998):175–190

    Google Scholar 

  • Ludzack FJ, Ettinger MB (1962) Controlling operation to minimize activated sludge effluent nitrogen. J Water Pollut Control Fed 34:920–931

    Google Scholar 

  • Mahajan CS, Narkhade SD, Khatik VA, Jadhav RN, Attarde SB (2010) Wastewater treatment at winery industry. Asian J Environ Sci 4(2):258–265

    Google Scholar 

  • Mahvi AH (2008) Sequencing batch reactor: a promising technology in wastewater treatment, Iran. J Environ Health Sci Eng 5(2):79–90

    Google Scholar 

  • Mahvi AM, Mesdaghinia AR, Karakani F (2004) Feasibility of continuous flow sequencing batch reactor in domestic wastewater treatment. Am J Appl Sci 1(4):348–353

    Article  Google Scholar 

  • Massa P, Dafinov A, Medina F, Fenoglio R (2008) Catalytic wet peroxide oxidation of phenolic solutions over Fe2O3/CeO2 and WO3/CeO2 catalyst systems. Catal Commun 9:1533–1538

    Article  Google Scholar 

  • McCarty PL (1981) One hundred years of anaerobic treatment digestion 1981. In: Hughes L et al (eds) Anaerobic digestion, vol 1. Elsevier Biomedical Press, New York, pp 3–21

    Google Scholar 

  • McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44(8):149–156

    Article  Google Scholar 

  • Metcalf and Eddy (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw Hill, New York

    Google Scholar 

  • Mmontshi LS, Keneiloe S, Richard M, Daniel MM (2019) Municipal wastewater treatment technologies: a review. (SMPM-2019)

  • Moigno AF (1881) Mouras automatic scavenger. Cosmos, p 622

  • Moigno AF (1882) Mouras automatic scavenger. Cosmos, p 97

  • Morse GK, Brett SW, Guy JA, Lester JN (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81. https://doi.org/10.1016/S0048-9697(97)00332-X

    Article  Google Scholar 

  • Muhammad AHR, Malik MM, Mukhta S (2017) Urbanization and its effects on water resources: an exploratory analysis. Asian J Water Environ Pollut 15(1):67–74. https://doi.org/10.3233/AJW-180007

    Article  Google Scholar 

  • Musa MA, Idrus S (2021) Physical and biological treatment technologies of slaughterhouse wastewater: a review. Sustainability 13:4656. https://doi.org/10.3390/su13094656

    Article  Google Scholar 

  • Naz I, Saroj DP, Mumtaz S, Ali N, Ahmed S (2014) Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environ Technol 2015 Jan-Feb; 36(1–4):424–34. https://doi.org/10.1080/09593330.2014.951400. Epub 2014 Sep 3. PMID: 25182275.

    Article  Google Scholar 

  • Nopens I, Biggs CA, De Clercq B, Govoreanu R, Wilen BM, Lant P, Vanrolleghem PA (2002) Modelling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modeling (PBM). Water Sci Technol 45(6):41–49

    Article  Google Scholar 

  • Odegaard H (2000) Advanced compact wastewater treatment based on coagulation and moving bed biofilm processes. Water Sci Technol 42(12):33–48

    Article  Google Scholar 

  • Ødegaard H, Rusten B, Westrum T (1994) A new moving bed biofilm reactor—applications and results. Water Sci Technol 29(10–11):157–165. https://doi.org/10.2166/wst.1994.0757

    Article  Google Scholar 

  • Paillard H, Brunet R, Dore M (1988) Conditions optimales d’application du système oxydant ozoneperoxyde d’hydrogène. Water Res 22(1):91–103

    Article  Google Scholar 

  • Pal P (2017) Biological treatment technology. Ind Water Treat Process Technol. https://doi.org/10.1016/b978-0-12-810391-3.00003-5

    Article  Google Scholar 

  • Pal S, Sarkar U, Dasgupta D (2010) Dynamic simulation of secondary treatment processes using trickling filter in a sewage treatment work in Howrah, West Bengal, India. Desalination 253(2010):135–140

    Article  Google Scholar 

  • Pearce GK (2008) UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination 222:66–73

    Article  Google Scholar 

  • Peter Clark J (2011) Getting a fix on freeze concentration. Food Technol Mag 65(12):78–79

    Google Scholar 

  • Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond Ser B Biol Sci. https://doi.org/10.1098/rspb.1911.0073

    Article  Google Scholar 

  • Quiroga FJT (2011) Waste stabilization ponds for wastewater treatment, anaerobic pond

  • Rane MV, Siddhart J (2008) Indian Patents, Industrial Research and Consultancy centre). Patent Number: 204956

  • Ravi K Aerated lagoons: types and advantages, sewage treatment. Environmental pollution article. https://www.environmentalpollution.in/sewage-treatment/aerated-lagoons/aerated-lagoons-types-and-advantages-sewage-treatment/5788

  • Rodgers M, Zhan XM, Dolan B (2007) Mixing characteristics and whey wastewater treatment of a novel moving anaerobic biofilm reactor. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng A39(8):2183–2193

    Google Scholar 

  • SAMCO article (2021) Are biological trickling filters right for your municipal wastewater treatment facility? https://samcotech.com/are-biological-trickling-filters-right-for-your-municipal-wastewater-treatment-facility/

  • Sarner E (1985) Oxidation ponds as the polishing process of the wastewater treatment plant in Lund. Vatten 41:186–192

    Google Scholar 

  • Seow TW, Lim CK, Hanif M (2016) Review on wastewater treatment technologies. Int J Appl Environ Sci 11:111–126

    Google Scholar 

  • Singh M, Srivastava RK (2010) Sequencing batch reactor technology for biological wastewater treatment: a review. Asia Pac J Chem Eng 2011(6):3–13

    Google Scholar 

  • Singh R, Paul B, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  Google Scholar 

  • Singhal A, Gomes J, Praveen VV, Ramachandran KB (1998) Axial dispersion model for upflow anaerobic sludge blanket reactors. American Chemical Society and American Institute of Chemical Engineers. Biotechnol Prog 14:645–648

    Article  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207. https://doi.org/10.1016/j.tree.2008.11.009

    Article  Google Scholar 

  • Stanbridge HH (1976) History of sewage treatment in Britain (in 12 volumes). Institute of Water Pollution Control, Maidstone

    Google Scholar 

  • Stuckey DC (2010) Anaerobic Baffled reactor (ABR) for wastewater treatment. Environ Anaerob Technol. https://doi.org/10.1142/9781848165434_0008

    Article  Google Scholar 

  • Suresh S, Tripathi RK, Gernal Rana MN (2011) Review on the treatment of industrial wastewater using the sequential batch reactor. Int J Sci Technol Manag ISSN: 2229-6646, IJSTM 2

  • Tait SJ, Freidman AA (1980) Anaerobic rotating biological contactor for carbonaceous wastewaters. J WPCF 52:2257–2269

    Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: an overview. In: Metcalf & Eddy Inc (ed) Wastewater engineering, treatment and reuse, 4th edn. McGraw-Hill, New York

  • Tedesco M, Hamelers HV, Biesheuvel PM (2017) Nernst–Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes. J Membr Sci 531:172–182

    Article  Google Scholar 

  • Tetteh EK, Rathilal S, Chetty M, Armah EK, Sackey DA (2019) Treatment of water and wastewater for reuse and energy generation-emerging technologies. Water Wastewater Treat. https://doi.org/10.5772/intechopen.84474

    Article  Google Scholar 

  • Tharavathy NC, Krishnamoorthy M, Hosetti BB (2013) Oxidation pond: a tool for wastewater treatment. Research and reviews. J Ecol Environ Sci 2(2):1–4

    Google Scholar 

  • The People's Daily, Friday, November 30, 2001, Beijing. World Bank supports China's wastewater treatment

  • The United States Environmental Protection Agency (USEPA) (1999) Wastewater technology fact sheet sequencing batch reactors. U.S. Environmental Protection Agency Washington, D. C., 832 F-99-073

  • The United States Environmental Protection Agency (2011) Principles of design and operations of wastewater treatment pond systems for plant operators, engineers, and managers. EPA 600-R-11-088. Office of Research and Development, Cincinnati

  • Toole GO, Kaplan HB, Kolter R (2000) Biofilms formation as a microbial development. Annu Rev Microbiol 54:49–79

    Article  Google Scholar 

  • UK Essays. (2018). the history of oxidation ponds. Retrieved from https://www.ukessays.com/essays/engineering/the-history-about-oxidation-ponds.php?vref=1

  • United States Environmental Protection Agency (USEPA-2002), Wastewater Technology Factsheet, Anaerobic Lagoons

  • Urban waters Bengaluru (2017) http://bengaluru.urbanwaters.in/how-to-treat-wastewater-at-home-174/

  • USEPA-2002, Wastewater technologies fact sheet: anaerobic Lagoons, office of water EPA 832-F-02-009, September 2002

  • Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 57:1137–1148

    Article  Google Scholar 

  • Vergara-López S, Domínguez MC, Conejo MC, Pascual Á, Rodríguez-Baño J (2013) Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca. Clin Microbiol Infect 19(11):E490–E498. https://doi.org/10.1111/1469-0691.12288

    Article  Google Scholar 

  • Verhoeven JTA, Beltman B, Bobbink R, Whigham DF (2006) Wetlands and natural resource management. Springer, New York

    Book  Google Scholar 

  • Visbeck M (2018) Ocean science research is key for a sustainable future. Nat Commun 9(1):690

    Article  Google Scholar 

  • Tare V (2011) Sewage Treatment in Class I Towns Recommendations and Guidelines. 003_GBP_IIT_EQP_S&R_02_Ver 1_Dec 2010

  • Waleed M (2007) Cost analysis of trickling-filtration and activated-sludge plants for the treatment of municipal wastewater. Research Gate

  • Wang LK (2005) Waste treatment in the process industries. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wang J, Huang Y, Zhao X (2004) Performance and characteristics of an anaerobic baffled reactor. Biores Technol 93(2):205–208. https://doi.org/10.1016/j.biortech.2003.06.004

    Article  Google Scholar 

  • Warsinger DM (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81:209–237

    Article  Google Scholar 

  • Webster C (1962) The sewers of Mohenjo-Daro. J Water Pollut Con F 34:116–123

    Google Scholar 

  • Wen L, Recknagel F (2002) In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment. Agric Ecosyst Environ 90(1):9–15

    Article  Google Scholar 

  • Wintgens T, Yusong L, Kazner C (2013) Water resource and industry. Water Resour Ind. https://doi.org/10.1016/j.wri.2013.08.001

    Article  Google Scholar 

  • Yasar A, Tabinda AB (2009) Anaerobic treatment of industrial wastewater by UASB reactor integrated with chemical oxidation process: an overview. Pol J Environ Stud 19(5):1051–1061

    Google Scholar 

  • Yeh AC, Lu C, Lin M (1997) Performance of an anaerobic rotating biological contactor: effects of flow rate and influent organic strength. Water Res 31(6):1251–1260

    Article  Google Scholar 

Download references

Acknowledgements

All the authors have contributed equally.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Bherwani.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethics declarations

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangamnere, R., Misra, T., Bherwani, H. et al. A critical review of conventional and emerging wastewater treatment technologies. Sustain. Water Resour. Manag. 9, 58 (2023). https://doi.org/10.1007/s40899-023-00829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-023-00829-y

Keywords

Navigation