Skip to main content
Log in

Optimization Methodology for High COD Nutrient-Limited Wastewaters Treatment Using BAS Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Optimization of biofilm activated sludge (BAS) process via mathematical modelling is an entangle activity since economic, environmental objective and technical decision must be considered. This paper presents a methodology to optimize the operational conditions of BAS process in four steps by combining dynamic simulation techniques with non-linear optimization methods and with operative decision-making criteria. Two set of variables are separately prioritized in the methodology: essential variables related to physical operation to enforce established process performance, and refinement variables related to biological processes that can generate risks of bulking, pin-point floc and rising sludge. The proposed optimization strategy is applied for the treatment of high COD wastewater under nutrient limitation using an integrated mathematical model for COD removal that include predation, hydrolysis and a simplified approach to the limiting solids flux theory in the secondary clarifier in order to facilitate the convergence of the optimization solver. The methodology is implemented in a full-scale wastewater treatment plant for a cellulose and viscose fibre mill obtaining (i) improvement of the effluent quality index (Kg pollution/m3) up to 62% and, (ii) decrease the operating cost index (€/m3) of the process up to 30% respect the regular working operational conditions of the plant. The proposed procedure can be also applied to other biological treatments treating high COD nutrient-limited industrial wastewater such as from textile and winery production among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Surface area of the secondary settler (m2)

AS:

Activated sludge process

BAS:

Biofilm activated sludge process

BOD:

Biological oxygen demand (g/m3)

CD:

Aeration energy associated to the carbonaceous demand (KWh/day)

COD:

Chemical oxygen demand (g/m3)

EQI:

Effluent quality index (Kg pollution/m3)

GL:

Limiting solid flux (Kg TSS/m2 hour)

HLR:

Hydraulic loading rate in secondary settler (m3/m2 hour)

HRT:

Hydraulic retention time in activated sludge rector (hours)

K:

Coefficient for each settleability range (m3/Kg)

m:

Coefficient for each settleability range

MBBR:

Moving bed biofilm reactor

ME:

Mixing energy (KWh/day)

n:

Coefficient for each settleability range (m3/Kg)

NC:

Nutrient cost (€/year)

ND:

Aeration energy associated to the nitrogenous demand (KWh/day)

NO:

Nitrate concentration (g/m3)

OCI:

Operating cost index (€/m3)

P:

Phosphorous concentration (g/m3)

PE:

Pumping energy (KWh/day)

Q:

Flow rate (m3/day)

R:

Sludge recycle ratio (%)

SLR:

Solid loading rate (Kg TSS/m2 hour)

SP:

Sludge production (Tn TSS/day)

SRT:

Sludge retention time in activated sludge rector (days)

SVI:

Sludge volume index (mL/g)

TCI:

Total cost index (€/m3)

TN:

Total nitrogen concentration (g/m3)

TSS:

Total suspended solids concentration (g/m3)

TSSAS :

Total suspended solids concentration in activated sludge reactor (g/m3)

TSSW :

Total suspended solids concentration in sludge wastage stream (g/m3)

TKN:

Total Kjeldahl nitrogen concentration (g/m3)

v:

Sludge settling velocity (m3/m2 hour)

vo:

Coefficient for each settleability range (m/hour)

νd:

Hydraulic retention time in the secondary settler (hours)

e:

Effluent

f:

Filtered

i:

Influent

R:

Sludge recycled

W:

Sludge wastage

References

  • Amanatidou, E., Samiotis, G., Trikoilidou, E., Pekridis, G., & Taousanidis, N. (2015a). Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time. Water Research, 69, 20–29. https://doi.org/10.1016/j.watres.2014.10.061.

    Article  CAS  Google Scholar 

  • Amanatidou, E., Samiotis, G., Bellos, D., & Pekridis, G. (2015b). Net biomass production under complete solids retention in high organic load activated sludge process. Bioresource Technology, 182, 492–502.

    Article  CAS  Google Scholar 

  • Bakos, V., Kiss, B., & Jobbágy, A. (2016). Problems and causes of marginal nutrient availability in winery wastewater treatment. Acta Alimentaria, 45(4), 532–541.

    Article  CAS  Google Scholar 

  • Boltz, J. P., Smets, B. F., Rittmann, B. E., Van Loosdrecht, M. C., Morgenroth, E., & Daigger, G. T. (2017). From biofilm ecology to reactors: a focused review. Water Science and Technology, 75(8), 1753-1760.

  • Chen, W., Lu, X., & Yao, C. (2015). Optimal strategies evaluated by multi-objective optimization method for improving the performance of a novel cycle operating activated sludge process. Chemical Engineering Journal, 260, 492–502. https://doi.org/10.1016/j.cej.2014.08.087.

    Article  CAS  Google Scholar 

  • Comas, J., Rodríguez-Roda, I., Sànchez-Marrè, M., Cortés, U., Freixó, A., Arráez, J., & Poch, M. (2003). A knowledge-based approach to the deflocculation problem: integrating on-line, off-line, and heuristic information. Water Research, 37(10), 2377–2387. https://doi.org/10.1016/S0043-1354(03)00018-6.

    Article  CAS  Google Scholar 

  • Comas, J., Rodríguez-Roda, I., Gernaey, K. V., Rosen, C., Jeppsson, U., & Poch, M. (2008). Risk assessment modelling of microbiology-related solids separation problems in activated sludge systems. Environmental Modelling and Software, 23(10–11), 1250–1261. https://doi.org/10.1016/j.envsoft.2008.02.013.

    Article  Google Scholar 

  • Comeau, Y., Peteesen, B., Stuart, P., Perkier, M., Graff, S., & Asselin, C. (2003). Activated sludge yield reduction by the low sludge production (LSP) process results are promising. Pulp and Paper Canada, 104(8), 40–42.

    CAS  Google Scholar 

  • Copp, J. B. (2002). The COST simulation benchmark. Description and simulator manual. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Dai, H., Chen, W., & Lu, X. (2016). The application of multi-objective optimization method for activated sludge process: a review. Water Science and Technology, 73(2), 223–235. https://doi.org/10.2166/wst.2015.489.

    Article  CAS  Google Scholar 

  • Descoins, N., Deleris, S., Lestienne, R., Trouvé, E., & Maréchal, F. (2012). Energy efficiency in waste water treatments plants: optimization of activated sludge process coupled with anaerobic digestion. Energy, 41(1), 153–164. https://doi.org/10.1016/j.energy.2011.03.078.

    Article  CAS  Google Scholar 

  • El Shorbagy, W., Nabil, N., & Droste, R. L. (2013). Optimization of A20 BNR processes using ASM and EAWAG models: model performance. Water Environment Research, 85(12), 2271–2284. https://doi.org/10.2175/106143013X13596524517102.

    Article  CAS  Google Scholar 

  • Espírito Santo, I. A. C. P., Costa, L., & Fernandes, E. M. G. P. (2013). On optimizing a WWTP design using multi-objective approaches. Engineering Letters, 21(4), 193–202.

    Google Scholar 

  • Fan, C., Kao, C. F., & Liu, Y. H. (2017). Quantitative characterization of organic diffusion using an analytical diffusion-reaction model and its application to assessing BOD removal when treating municipal wastewater in a plug flow reactor. Water Research, 121, 329–337. https://doi.org/10.1016/j.watres.2017.05.050.

    Article  CAS  Google Scholar 

  • Flores-Alsina, X., Rodríguez-Roda, I., Sin, G., & Gernaey, K. V. (2008). Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty. Water Research, 42(17), 4485–4497. https://doi.org/10.1016/j.watres.2008.05.029.

    Article  CAS  Google Scholar 

  • Flores-Alsina, X., Comas, J., Rodriguez-Roda, I., Gernaey, K. V., & Rosen, C. (2009). Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model. Water Research, 43(18), 4527–4538. https://doi.org/10.1016/j.watres.2009.07.033.

    Article  CAS  Google Scholar 

  • Flores-Alsina, X., Gallego, A., Feijoo, G., & Rodriguez-Roda, I. (2010). Multiple-objective evaluation of wastewater treatment plant control alternatives. Journal of Environmental Management, 91(5), 1193–1201. https://doi.org/10.1016/j.jenvman.2010.01.009.

    Article  CAS  Google Scholar 

  • Foscoliano, C., Del Vigo, S., Mulas, M., & Tronci, S. (2016). Predictive control of an activated sludge process for long term operation. Chemical Engineering Journal, 304, 1031–1044.

    Article  CAS  Google Scholar 

  • Freedman, D. L., Payauys, A. M., & Karanfil, T. (2005). The effect of nutrient deficiency on removal of organic solvents from textile manufacturing wastewater during activated sludge treatment. Environmental Technology, 26(2), 179–188. https://doi.org/10.1080/09593332608618570.

    Article  CAS  Google Scholar 

  • Garrido-Baserba, M., Reif, R., Molinos-Senante, M., Larrea, L., Castillo, A., Verdaguer, M., & Poch, M. (2016). Application of a multi-criteria decision model to select of design choices for WWTPs. Clean Technologies and Environmental Policy, 18(4), 1097–1109. https://doi.org/10.1007/s10098-016-1099-x.

    Article  CAS  Google Scholar 

  • Gray, N. F. (2004). Biology of wastewater treatment (2nd ed.). Dublin: World Scientific.

    Book  Google Scholar 

  • Guerrero, J., Guisasola, A., Vilanova, R., & Baeza, J. A. (2011). Improving the performance of a WWTP control system by model-based setpoint optimisation. Environmental Modelling and Software, 26(4), 492–497. https://doi.org/10.1016/j.envsoft.2010.10.012.

    Article  Google Scholar 

  • Hakanen, J., Miettinen, K., & Sahlstedt, K. (2011). Wastewater treatment: new perspectives provided by interactive multiobjective. Decision Support Systems, 51(328), 337.

    Google Scholar 

  • Hakanen, J., Sahlstedt, K., & Miettinen, K. (2013). Wastewater treatment plant design and operation under multiple conflicting objective functions. Environmental Modelling & Software, 46, 240–249. https://doi.org/10.1016/j.envsoft.2013.03.016.

    Article  Google Scholar 

  • Henze, M. (2008). Modeling of aerobic wastewater treatment processes. In Biotechnology (Vol. 11–12, pp. 417–427). Wiley. https://doi.org/10.1002/9783527620999.ch20l.

  • Henze, M., Dupont, R., Grau, P., & de la Sota, A. (1993). Rising sludge in secondary settlers due to denitrification. Water Research, 27(2), 231–236. https://doi.org/10.1016/0043-1354(93)90080-2.

    Article  Google Scholar 

  • Hreiz, R., Latifi, M. A., & Roche, N. (2015a). Optimal design and operation of activated sludge processes: state-of-the-art. Chemical Engineering Journal, 281, 900–920. https://doi.org/10.1016/j.cej.2015.06.125.

    Article  CAS  Google Scholar 

  • Hreiz, R., Roche, N., Benyahia, B., & Latifi, M. A. (2015b). Chemical engineering research and design multi-objective optimal control of small-size wastewater treatment plants. Chemical Engineering Research and Design, 102, 345–353. https://doi.org/10.1016/j.cherd.2015.06.039.

    Article  CAS  Google Scholar 

  • Hussain, A., Kumar, P., & Mehrotra, I. (2015). Nitrogen and phosphorus requirement in anaerobic process: a review. Environmental Engineering and Management Journal, 14(4), 769–780.

    Article  CAS  Google Scholar 

  • Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326–342. https://doi.org/10.1016/j.ecoenv.2014.05.005.

    Article  CAS  Google Scholar 

  • Kim, M., Kim, M.-J., Pyo, S.-H., Lee, S.-C., Ghorbannezhad, P., Foo, D. C. Y., & Yoo, C.-K. (2015). Greenhouse emission pinch analysis (GEPA) for evaluation of emission reduction strategies. Clean Technology and Environmental Policy, 18(5), 1381–1389.

    Article  CAS  Google Scholar 

  • Li, B., Qiu, Y., Zhang, C., Chen, L., & Shi, H. (2016). Understanding biofilm diffusion profiles and microbial activities to optimize integrated fixed-film activated sludge process. Chemical Engineering Journal, 302, 269–277. https://doi.org/10.1016/j.cej.2016.05.048.

    Article  CAS  Google Scholar 

  • Malmqvist, Å., Welander, T., & Olsson, L. E. (2007). Long term experience with the nutrient limited BAS process for treatment of forest industry wastewaters. Water Science and Technology, 55(6), 89–97.

    Article  Google Scholar 

  • Rankin, A., Aert, M. V. A. N., & Welander, T. (2007). Low sludge yield biofilm activated sludge ( BAS ) upgrade – Quesnel River Pulp. Tappi Journal, 6(5), 17–22.

    CAS  Google Scholar 

  • Revilla, M., Galán, B., & Viguri, J. R. (2016a). Analysis and modelling of predation on biofilm activated sludge process: influence on microbial distribution, sludge production and nutrient dosage. Bioresource Technology, 220, 572–583. https://doi.org/10.1016/j.biortech.2016.08.107.

    Article  CAS  Google Scholar 

  • Revilla, M., Galán, B., & Viguri, J. R. (2016b). An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis. Water Research, 98, 84–97. https://doi.org/10.1016/j.watres.2016.04.003.

    Article  CAS  Google Scholar 

  • Rivas, A., Irizar, I., & Ayesa, E. (2008). Model-based optimisation of wastewater treatment plants design. Environmental Modelling and Software, 23(4), 435–450. https://doi.org/10.1016/j.envsoft.2007.06.009.

    Article  Google Scholar 

  • Sointio, J., Rankin, A., & van Aert, M. (2006). Biofilm activated sludge process at Quesnel River Pulp installation. Environmental Science & Engineering Magazine, November, 22–24.

  • Sweetapple, C., Fu, G., & Butler, D. (2014). Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Research, 55(0), 52–62. https://doi.org/10.1016/j.watres.2014.02.018.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. New York City: McGrawHill Education.

    Google Scholar 

  • van Haandel, A.,& van der Lubbe, J. (2012). Handbook of biological wastewater treatment. 2nd ed.; IWA Publishing: London, UK.

  • Vanrolleghem, P. A., & Gillot, S. (2002). Robustness and economic measures as control benchmark performance criteria. Water Science and Technology, 45(4–5), 117–126.

    Article  CAS  Google Scholar 

  • von Sperling, M. (2007). Activated sludge and aerobic biofilm reactors. IWA publishing. https://doi.org/10.2166/9781780402123.

  • Welander, T., Olsson, L. E., & Fasth, C. (2002). Nutrient-limited biofilm pretreatment: an efficient way to upgrade activated sludge plants. Tappi Journal, 1(4), 20–26.

    CAS  Google Scholar 

  • Zhou, Z., Shen, X., Jiang, L. M., Wu, Z., Wang, Z., Ren, W., & Hu, D. (2015). Modeling of multimode anaerobic/anoxic/aerobic wastewater treatment process at low temperature for process optimization. Chemical Engineering Journal, 281, 644–650. https://doi.org/10.1016/j.cej.2015.07.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SNIACE Company for their help and support during the wastewater sampling and characterization at industrial plant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier R. Viguri.

Additional information

Highlights

• A novel optimization methodology for biofilm activated sludge (BAS) is proposed

• Our BAS model includes a simplified approach to the limiting solid flux theory

• Combination of simulation and optimization tools overtakes the mathematical challenge

• Economic, effluent quality and technical criteria are included in the methodology

• Reductions up to 25% of cost and 62% of pollution are obtained at optimal condition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revilla, M., Galán, B. & Viguri, J.R. Optimization Methodology for High COD Nutrient-Limited Wastewaters Treatment Using BAS Process. Water Air Soil Pollut 229, 191 (2018). https://doi.org/10.1007/s11270-018-3835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3835-9

Keywords

Navigation