Skip to main content
Log in

Superior Adsorption Performance of Mesoporous Carbon Nitride for Methylene Blue and the Effect of Investigation of Different Modifications on Adsorption Capacity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A series of mesoporous carbon nitride (MCN) with tunable specific surface area, pore volume, and nitrogen content has been prepared by using SBA-15 as template and ethylenediamine (EDA) and carbon tetrachloride (CTC) as precursors, respectively. The composition and structural properties of the obtained materials were characterized by FT-IR, XRD, SEM, TEM, N2 adsorption-desorption, zeta potential, and elemental analysis. Results revealed that the largest special surface area could reach up to 667 m2 cm−3 and specific pore volume to 0.496 cm3 g−1, and the nitrogen content of MCN could be controlled by adjusting the EDA to CTC weight ratio. It was demonstrated for the first time that the synthesized MCN exhibited excellent adsorptive capability toward methylene blue (MB) and the adsorption capacity was attributed to the large specific surface area and surface functional groups. The effects of parameters, including pH, initial concentration, contact time, and temperature, were investigated in batch static adsorption experiments. Besides, the adsorption process of MB onto MCN is fitted to the Langmuir isotherm and pseudo-second-order kinetic models, and the maximum adsorption amounts of MB on MCN were 360.8 mg g−1. Moreover, the thermodynamic analysis showed that the adsorption was endothermic and spontaneous. MCN remained to have high adsorption capacity after five times of recycling test. All these results demonstrated that MCN is a promising material for adsorbing cationic dye in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acemioğlu, B., Ertaş, M., Alma, M. H., & Usta, M. (2014). Investigation of the adsorption kinetics of methylene blue onto cotton wastes. Turkish Journal of Chemistry, 38(3), 454–469.

    Article  Google Scholar 

  • Akhundi, A., & Habibi-Yangjeh, A. (2016a). Novel g-C3N4/Ag2SO4 nanocomposites: fast microwave-assisted preparation and enhanced photocatalytic performance towards degradation of organic pollutants under visible light. Journal of Colloid & Interface Science, 482, 165–174.

    Article  CAS  Google Scholar 

  • Akhundi, A., & Habibi-Yangjeh, A. (2016b). Ternary magnetic g-C3N4/Fe3O4/AgI nanocomposites: novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Materials Chemistry and Physics, 174, 59–69.

    Article  CAS  Google Scholar 

  • Auta, M., & Hameed, B. (2012). Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chemical Engineering Journal, 198, 219–227.

  • Batmaz, R., Mohammed, N., Zaman, M., Minhas, G., Berry, R. M., & Tam, K. C. (2014). Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 21(3), 1655–1665.

    Article  CAS  Google Scholar 

  • Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99(17), 8441–8444.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1), 259–267.

  • Datta, K., Reddy, B., Ariga, K., & Vinu, A. (2010). Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angewandte Chemie International Edition, 49(34), 5961–5965.

    Article  CAS  Google Scholar 

  • De, D. S., & Basu, J. K. (1999). Adsorption of methylene blue on to a low cost adsorbent developed from sawdust. Indian Journal of Environmental Protection, 19(6), 416–421.

  • Doke, S. M., & Yadav, G. D. (2014). Novelties of combustion synthesized titania ultrafiltration membrane in efficient removal of methylene blue dye from aqueous effluent. Chemosphere, 117(1), 760–765.

    Article  CAS  Google Scholar 

  • Dong, Y., Lu, B., Zang, S., et al. (2011). Removal of methylene blue from coloured effluents by adsorption onto SBA‐15. Journal of chemical technology and biotechnology, 86(4), 616–619.

  • Dutta, D., Thakur, D., & Bahadur, D. (2015). SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chemical Engineering Journal, 281, 482–490.

    Article  CAS  Google Scholar 

  • Fernandes, A. N., Almeida, C. A. P., Menezes, C. T. B., et al. (2007). Removal of methylene blue from aqueous solution by peat. Journal of hazardous materials, 144(1), 412–419.

  • Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., et al. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61.

    Article  CAS  Google Scholar 

  • Gusmão, K. A. G., Gurgel, L. V. A., Melo, T. M. S., & Gil, L. F. (2013). Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects. Journal of Environmental Management, 118C(2), 135–143.

    Article  Google Scholar 

  • Habibi-Yangjeh, A., & Akhundi, A. (2016). Novel ternary g-C3N4/Fe3O4/Ag2CrO4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. Journal of Molecular Catalysis A: Chemical, 415, 122–130.

    Article  CAS  Google Scholar 

  • Hameed, B., Ahmad, A., & Latiff, K. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1), 143–149.

    Article  CAS  Google Scholar 

  • Haque, E., Jun, J. W., Talapaneni, S. N., et al. (2010). Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 20(48), 10801–10803.

    Article  CAS  Google Scholar 

  • Ho, K. Y., McKay, G., & Yeung, K. L. (2003). Selective adsorbents from ordered mesoporous silica. Langmuir, 19(7), 3019–3024.

    Article  CAS  Google Scholar 

  • Hu, R., Wang, X., Dai, S., Shao, D., Hayat, T., & Alsaedi, A. (2015). Application of graphitic carbon nitride for the removal of Pb (II) and aniline from aqueous solutions. Chemical Engineering Journal, 260, 469–477.

    Article  CAS  Google Scholar 

  • Janoš, P., Coskun, S., Pilařová, V., & Rejnek, J. (2009). Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings. Bioresource Technology, 100(3), 1450–1453.

    Article  Google Scholar 

  • Koh, G., Zhang, Y.-W., & Pan, H. (2012). First-principles study on hydrogen storage by graphitic carbon nitride nanotubes. International Journal of Hydrogen Energy, 37(5), 4170–4178.

    Article  CAS  Google Scholar 

  • Lakhi, K. S., Cha, W. S., Joseph, S., Wood, B. J., Aldeyab, S. S., Lawrence, G., et al. (2015). Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today, 243, 209–217.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, T., Wang, Z., Dawson, G., & Chen, W. (2011). Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 21(38), 14398–14401.

    Article  CAS  Google Scholar 

  • Liu, T., Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., et al. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces, 90, 197–203.

    Article  CAS  Google Scholar 

  • Ma, Q. L., Lu, X. F., Ma, J. C., Gao, L., Bao, W. R., & Ma, H. Z. (2015). A new ferric chloride modified kaolin coagulant and its application in treatment of methylene blue wastewater. Asian Journal of Chemistry, 27(8), 2856–2860.

    Article  CAS  Google Scholar 

  • McKay, G., Porter, J., & Prasad, G. (1999). The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water, Air, and Soil Pollution, 114(3–4), 423–438.

  • Monash, P., Pugazhenthi, G., Monash, P., & Pugazhenthi, G. (2010). Investigation of equilibrium and kinetic parameters of methylene blue adsorption onto MCM-41. Korean Journal of Chemical Engineering, 27(4), 1184–1191.

    Article  CAS  Google Scholar 

  • Moradi, S., & Baniamerian, M. (2011). The effect of mesoporous carbon modification by nitrogen on its enrichment efficiency of chromate ion: comparison between N-doped mesoporous carbon and amino grafted mesoporous carbon. Chemical Industry and Chemical Engineering, 17(4), 505–515.

    Article  CAS  Google Scholar 

  • Mousavi, M., Habibi-Yangjeh, A., & Abitorabi, M. (2016). Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 480, 218–231.

    Article  CAS  Google Scholar 

  • Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., et al. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78–82.

  • Vinu, A. (2008). Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Advanced Functional Materials, 18(5), 816–827.

    Article  CAS  Google Scholar 

  • Vinu, A., Ariga, K., Mori, T., Nakanishi, T., Hishita, S., Golberg, D., et al. (2005). Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Advanced Materials, 17(13), 1648–1652.

    Article  CAS  Google Scholar 

  • Wu, Z., Joo, H., & Lee, K. (2005). Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel. Chemical Engineering Journal, 112(1), 227–236.

    Article  CAS  Google Scholar 

  • Yan, T., Chen, H., Jiang, F., & Wang, X. (2014). Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous carbon nitride. Journal of Chemical & Engineering Data, 59(2), 508–515.

    Article  CAS  Google Scholar 

  • Yuan, X., Zhuo, S. P., Xing, W., Cui, H. Y., Dai, X. D., Liu, X. M., et al. (2007). Aqueous dye adsorption on ordered mesoporous carbons. Journal of Colloid and Interface Science, 310(1), 83–89.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhou, C., Zhou, W., Lei, A., Zhang, Q., Wan, Q., et al. (2011). Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bulletin of Environmental Contamination and Toxicology, 87(1), 86–90.

    Article  CAS  Google Scholar 

  • Zhang, F., Zhao, Z., Tan, R., Guo, Y., Cao, L., Chen, L., et al. (2012). Selective and effective adsorption of methyl blue by barium phosphate nano-flake. Journal of Colloid and Interface Science, 386(1), 277–284.

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, H., Qin, Z., Wang, J., & Fan, W. (2015). Synthesis of two-dimensional mesoporous carbon nitride under different carbonization temperatures and investigation of its catalytic properties in Knoevenagel condensations. RSC Advances, 5(29), 22838–22846.

    Article  CAS  Google Scholar 

  • Zhao, M., & Liu, P. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 112(1), 419–424.

    Article  CAS  Google Scholar 

  • Zhao, Z., Wang, X., Zhao, C., Zhu, X., & Du, S. (2010). Adsorption and desorption of antimony acetate on sodium montmorillonite. Journal of Colloid and Interface Science, 345(2), 154–159.

    Article  CAS  Google Scholar 

  • Zhao, J., Ren, W., & Cheng, H. M. (2012). Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry, 22(38), 20197–20202.

    Article  CAS  Google Scholar 

  • Zheng, H., Wang, Y., Zheng, Y., Zhang, H., Liang, S., & Long, M. (2008). Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chemical Engineering Journal, 143(1), 117–123.

    Article  CAS  Google Scholar 

  • Zheng, Y., Liu, J., Liang, J., Jaroniec, M., & Qiao, S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 5(5), 6717–6731.

    Article  CAS  Google Scholar 

  • Zhou, Y., Tang, L., Zeng, G., Chen, J., Cai, Y., Zhang, Y., et al. (2014). Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation. Biosensors and Bioelectronics, 61, 519–525.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21207051), Ph.D. Programs Foundation of the Ministry of Education of China (No. 20123227120015), Natural Science Foundation of Jiangsu Province (BK20150483), Special Financial Grant from the China Postdoctoral Science Foundation (2014T70488), Natural Science Fund for Colleges and Universities in Jiangsu Province (Nos. 16KJB530002, 15KJB550003), Society Development Fund of Zhenjiang (Nos. SH2012021, SH2013110), and Programs of Senior Talent Foundation of Jiangsu University (No. 15JDG024)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Zhang, W., Liu, Y. et al. Superior Adsorption Performance of Mesoporous Carbon Nitride for Methylene Blue and the Effect of Investigation of Different Modifications on Adsorption Capacity. Water Air Soil Pollut 228, 9 (2017). https://doi.org/10.1007/s11270-016-3189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3189-0

Keywords

Navigation