Skip to main content
Log in

Potential of Plantago major L. for Phytoremediation of Lead-Contaminated Soil and Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the phytoremediation potential of Plantago major L. to remediate lead (Pb) contaminated water and soil. Results of this investigation indicated that P. major L. roots exhibit a significant increase in Pb uptake relative to P. major leaves from polluted water and soil. In polluted water (40 mg/L Pb), P. major showed unusually high concentrations of Pb in their roots (9284.66 mg/kg) within 25 days as the rhizofiltration suggesting that an exclusion strategy for metal tolerance exist widely in him. In soil, P. major has the potential for phytostabilization. In Pb-contaminated soil at 20 mg/kg, P. major roots efficiently accumulated Pb (50.53 mg/kg and 77.12 mg/kg) after 10 and 20 days, respectively. Pb was taken up by P. major leaves to a lesser extent than the roots (13.87 mg/kg and 30.4 mg/kg) after 10 and 20 days, respectively. The results suggest that P. major may be considered a bioaccumulator species for Pb and can be used as a bioindicator of pollution with lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agency for Toxic Substances & Disease Registry, ATSDR (2005). Top 20 hazardous substances. <http://www.atsdr.cdc.gov/cxcx3.html> (accessed 09.08.08).

  • Ali, A., & AL-Homaidan, A. (2007). Removal of lead ions from polluted water using Plantago major L. and Phaseolus vulgaris L. Aust J Basic Appl Sci, 1(4), 467.

    CAS  Google Scholar 

  • Al-Jumaily, E. F., Hassan, A. A., & Rana, H. R. (2012). Extraction and purification of tannins from plantago lanceolata L. and assessment their antibacterial activity on pathogenesis of enteropathogenic E. coli in vitro and in vivo. DAMA Int, 1, 2319–5037.

    Google Scholar 

  • Arinbruster, D. A., Margaret, D. T., & Linda, M. H. (1994). Limit of detection (LOD)/Limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin Chem, 40(7), 1233–1238.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. J Nutr Soil Sci (United States), 3, 1–4.

    Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Reeves, R. R., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Florida: Lewis.

    Google Scholar 

  • Bekteshi, A., & Gezim, B. (2013). Uptake of heavy metals from Plantago major in the region of Durres, Albania. Pol J Environ Stud, 22(5), 1881–1885.

    CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol, 31, 860–865.

    Article  Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four EPA digestion methods for metal analysis using certified and Florida soils. J Environ Qual, 27, 1294–1300.

    Article  CAS  Google Scholar 

  • Chin, L., David, W. M., Leung, H., & Harry, T. (2009). Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins. Chemosphere, 76, 711–715.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accu-mulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut, 132, 29–40.

    Article  CAS  Google Scholar 

  • Dimitrova, I., & Yurukova, L. (2005). Bioindication of anthropogenic pollution with Plantago lanceolata L. (Plantaginaceae): metal accumulation, morphological and stomatal leaf characteristics. Phytol Balc, 11, 89–96.

    Google Scholar 

  • Filipović-Trajković, R., Zoran, S., Ljubomir, Š., & Snežana, A. (2012). The potential of different plant species for heavy metals accumulation and distribution. J Food Agric Environ, 10(1), 959–964.

    Google Scholar 

  • Fitzgerald, E. J., Callerey, J. M., Nesaratnam, S. T., & McLoughlin, P. (2003). Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut, 123, 67–74.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Hanaa, S. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic, 48, 244–251.

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol, 77, 229–236.

    Article  CAS  Google Scholar 

  • Genrich, I., Burd, D., George, D., & Glick, B. R. (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol, 46, 237–245.

    Article  Google Scholar 

  • Grubešić, R. J., Vukovic, J., Kremer, D., & Vladimir-Knĕzevic, S. (2005). Spectrophotometric method for polyphenols analysis: prevalidation and application on Plantago species L. J Pharm Biomed Anal, 39, 837–842.

    Article  CAS  Google Scholar 

  • Horak, O., Friest, W., Zwerger, I. (2006). Heavy metal contamination in the surroundings of a former Pb/Zn smelter in Arnoldstein (Austria): monitoring of bioavailable metal fractions in soils. In Proc. Int. Symp. Trace elements in the food chain, May 25–27, 2006 (pp. 191–195). Budapest.

  • Jung, C., Maederm, V., Funkm, F., Freym, B., Sticherm, H., & Frossardmm, E. (2003). Release of phenols from Lupinus albus L. roots exposed to copper and their possible role in copper detoxification. Plant Soil, 252, 301–312.

    Article  CAS  Google Scholar 

  • Justin, V., Majid, N., Islam, M. M., & Abdu, A. (2011). Assessment of heavy metal uptake and translocation in Acacia mangium for Phytoremediation of cadmium contaminated soil. J Food Agric Environ, 9, 588–592.

    Google Scholar 

  • Kamachi, H., Komori, I., Tamura, H., Sawa, Y., Karahara, I., Honma, Y., Wada, N., Kawabata, T., Matsuda, K., Ikeno, S., Noguchi, M., & Inoue, H. (2005). Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res, 118, 137–145.

    Article  CAS  Google Scholar 

  • Kobeasy, O., Abdel-Fatah, M., Samiha, M., Abd El-Salam, Z., & El-Ola, M. M. (2011). Biochemical studies on Plantago major L. and Cyamopsis tetragonoloba L. Int J Biodivers Conserv, 3, 83–91.

    Google Scholar 

  • Kurteva, M. K. (2009). Comparative study on Plantago major and P. lanceolata (Plantaginaceae) as bioindicators of the pollution in the region of the Asarel. Copper dressing works. Phytol Balc, 15, 261–271.

    Google Scholar 

  • Lee, K. K., Han, S. C., Yong, C. M., Soo, J. B., & Jae, Y. K. (2013). Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE J Civ Eng, 17, 44–50.

    Article  Google Scholar 

  • Liu, D., Song, L., Ejazul, I., Jun-ren, C., Jia-sen, W., Zheng-qian, Y., Dan-li, P., Wen-bo, Y., & Kou-ping, L. (2015). Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B (Biomed & Biotechnol), 16(2), 123–130.

    Article  CAS  Google Scholar 

  • López-Millán, A. F., Sagardoy, R., & Solanas, M. (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot, 65(2–3), 376–385.

    Article  CAS  Google Scholar 

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation soil and wild plant species from industrial area of Islamabad, Pakistan. J Botany, 42(1), 291–301.

    CAS  Google Scholar 

  • McGinty, T. (1996). Plants weed out lead contamination (p. 1). Princeton: Princeton Metro.

    Google Scholar 

  • Mmolawa, K. B., Likuku, A. S., & Gaboutloeloe, G. K. (2011). Assessment of heavy metal pollution in soils major roadside areas in Botswana. Afr J Environ Sci Technol, 5, 186–196.

    CAS  Google Scholar 

  • Mudgal, V., Madaan, N., & Mudgal, A. (2010). Heavy metals in plant: phytoremediation: plants used to remediate heavy metal pollution. Agic Biol J North Am, 1(1), 40.

    CAS  Google Scholar 

  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci, 59, 315–323.

    Article  CAS  Google Scholar 

  • Nurhayati, A. Y., Yuda, C. H., & Lestari, P. (2015). Early detection of lead stress on Marsilea Crenata using biolectricity measurement. Procedia Environ Sci, 28, 57–66.

    Article  CAS  Google Scholar 

  • Perkin Elmer Instruments Manual. (2002). Analytical methods for atomic absorption spectrometry (p. 96).

    Google Scholar 

  • Pollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. (2002). The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci, 21, 539–566.

    Article  CAS  Google Scholar 

  • Pulford, I., & Watson, C. (2003). Phytoremediation of heavy metal contaminated land by trees—a review. Environ Int, 29(4), 529–540.

    Article  CAS  Google Scholar 

  • Revathi, K., Harbabu, T. E., & Sudha, P. N. (2011). Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci, 2, 417–428.

    CAS  Google Scholar 

  • Romeh, A. (2010). Phytoremediation of water and soil contaminated with imidacloprid pesticide by Plantago major L. Int J Phytoremediation, 12, 188–199.

    Article  CAS  Google Scholar 

  • Romeh, A. (2013). Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr J Agric Res, 8, 4360–4364.

    CAS  Google Scholar 

  • Romeh, A. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. J Environ Health Sci Eng, 12, 381–388.

    Article  CAS  Google Scholar 

  • Romeh, A. (2015a). Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil. Int J Environ Sci Technol, 12, 3509–3518.

    Article  CAS  Google Scholar 

  • Romeh, A. (2015b). Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicol Environ Saf, 117, 124–131.

    Article  CAS  Google Scholar 

  • Romeh, A. A., & Hendawi, M. Y. (2013). Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett, 11, 163–170.

    Article  CAS  Google Scholar 

  • Ruso, J., Zapata, J., Hernandez, M., Ojeda, M. A., Benlloch, M., Prats-Perez, E., Tena, M., Lopez-Valbuena, R., & Jorrin, J. V. (2001). Toxic metals accumulation and total soluble phenolics in sunflower and tobacco plants. Minerva Biotechnol, 13, 93–95.

    Google Scholar 

  • Sahi, S. V., Bryant, N. L., Sharma, N. C., & Sing, S. C. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol, 36, 4676–4680.

    Article  Google Scholar 

  • Saier, J. R., & Trevors, J. T. (2010). Phytoremediation. Water Air Soil Pollut, 205(Suppl 1), S61–S63.

    Article  CAS  Google Scholar 

  • Sekhar, K. C., Kamala, C. T., Chary, S. N., Balaram, V., & Gregorio, G. (2005). Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soil. Chemosphere, 58, 507–514.

    Article  CAS  Google Scholar 

  • Sharifa, A. A., Neoh, Y. L., Iswadi, M. I., Khairul, O., AbdulHalim, M., Jamaludin, M., Mohamed, A., Hing, H. L. (2008). Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Annals of Microscopy, 8, 42–44.

  • SR EN ISO 6869:2002. Animal feeding stuffs. Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc - Method using atomic absorption spectrometry (ISO 6869:2000).

  • Tama’s, J., & Elza, K. (2005). In Z. Naturforsch (Ed.), Vegetation pattern and heavy metal accumulation at a mine tailing at Gyöngyösoroszi, Hungary (Vol. 60c, pp. 362–367).

    Google Scholar 

  • Tanhan, P., Kruatrachue, M., Pokethitiyook, P., & Chaiyarat, R. (2007). Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere, 68, 323–329.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1997). Method 3051a: microwave assisted acid dissolution of sediments, sludges, soils, and oils (2nd ed.). Washington, DC: U.S. Gov. Print Office.

    Google Scholar 

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci, 164, 645–655.

    Article  CAS  Google Scholar 

  • Wang, W. (1986). Toxicity tests of aquatic pollutants by using common duckweed. Environ Pollut, 11, 1–14.

    Article  CAS  Google Scholar 

  • Waranusantigul, P., Maleeya, K., Prayad, P., & Choowong, A. (2008). Evaluation of Pb phytoremediation potential in Buddleja asiatica and B. paniculata. Water Air Soil Pollut, 193, 79–90.

    Article  CAS  Google Scholar 

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Wei liao, S., & Wen-lian, C. (2004). Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Aquat Plant Manag, 42, 60–68.

    Google Scholar 

  • Wei, C. Y., & Chen, T. B. (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere, 63, 1048–1053.

    Article  CAS  Google Scholar 

  • Yargholi, B., Azimi, A. A., Baghvand, A., Liaghat, A. M., & Fardi, G. A. (2008). Investigation of cadmium absorption and accumulation in different parts of some vegetables. Am Eurasian J Agric Environ Sci, 3, 357–364.

    Google Scholar 

  • Zu, Y. Q., Li, Y., Christian, S., Laurent, L., & Lin, F. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area. China Environ Int, 30, 567–576.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Abd El-reheem M. (director of the Central Laboratory of the soil, food and feed) for their determination of Pb by atomic absorption spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ali Romeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeh, A.A., Khamis, M.A. & Metwally, S.M. Potential of Plantago major L. for Phytoremediation of Lead-Contaminated Soil and Water. Water Air Soil Pollut 227, 9 (2016). https://doi.org/10.1007/s11270-015-2687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2687-9

Keywords

Navigation