Skip to main content
Log in

Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection on more than 80 different crops. Azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested Plantago major L., Helianthus annus L. and Glycine max L. to clean soils under laboratory conditions. Results show that the accumulation efficiency of azoxystrobin and azoxystrobin acid in roots was higher than those of leaves. G. max roots were an efficient accumulator of azoxystrobin (25.32 mg/kg), followed by P. major roots (20.62 mg/kg) and H. annus roots (18.29 mg/kg), within 10 days, respectively. In the leaves, azoxystrobin significantly translocated into the P. major leaves and reached the maximum after 10 days of exposure (15.03 mg/kg), followed by H. annus leaves (9.8 mg/kg), while it reached the maximum after 3 days of exposure (3.12 mg/kg) in G. max leaves. Azoxystrobin acid significantly accumulated in P. major roots more than the G. max and H. annus roots. In the leaves, azoxystrobin acid significantly accumulated in G. max more than P. major and H. annus. The presence of P. major with Tween 80 had effects on azoxystrobin desorption from soil, plant uptake metabolism and translocation more than P. major alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azmat R, Haider S, Riaz M (2009) An inverse relation between Pb2+ and Ca2+ ions accumulation in Phaseolus mungo and Lens culinaris under Pb stress. Pak J Bot 41:2289–2295

    CAS  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, ParrDobrzanski B (2002) Review: the strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  CAS  Google Scholar 

  • Bending GD, Rodriguez-Cruz MS, Lincoln DS (2007) Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82–88

    Article  CAS  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Smith SJ, Cooper M (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057

    Article  CAS  Google Scholar 

  • Chefetz B (2003) Sorption of phenathrene and atrazine by plant cuticular fractions. Environ Toxicol Chem 22:2492–2498

    Article  CAS  Google Scholar 

  • Cohen SZ, Creeger SM, Carsel RF, Enfield CG (1984) Potential pesticide contamination of groundwater from agricultural uses. In: Kruegar RF, Seiber JN (ed) Treatment and disposal of pesticide wastes. ACS symposium series no. 259. American Chemical Society, Washington, pp 297–325

  • Cuypers C, Pancras T, Grotenhuis T, Rulkens W (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46:1235–1245

    Article  CAS  Google Scholar 

  • Deepali L, Korade M, Fulekar H (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350

    Article  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127–133

    Article  CAS  Google Scholar 

  • Fenoll J, Encarnaci O, Pilar H, Alfredo L, Pilar F (2008) Strobilurin residue levels in greenhouse-grown pepper and under cold-storage conditions. J Sci Food Agric 89:299–303

    Article  Google Scholar 

  • Ghosh RK, Neera S (2009) Leaching behaviour of azoxystrobin and metabolites in soil columns. Manag Sci 65:1009–1014

    CAS  Google Scholar 

  • Gomaa EA, Belal MH (1975) Determination of dimethoate residues in some vegetable and cotton plant. Zagazig J Agric Res 2:215–221

    Google Scholar 

  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme Microb Technol 39:647–653

    Article  Google Scholar 

  • Gregoire C, Payraudeau S, Domange N (2010) Use and fate of 17 pesticides applied on a vineyard catchment. Int J Environ Anal Chem 90:406–420

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Mingorance MD, Peña A (2010) Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions. J Environ Manag 95:S223–S227

    Article  Google Scholar 

  • Ibáñez SG, Merini LJ, Barros GG (2014) Vicia sativa–rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11(1679):1690

    Google Scholar 

  • Karanasios E, Tsiropoulos NG, Karpouzas DG, Menkissoglu-Spiroudi U (2010) Novel biomixtures based on local Mediterranean lignocellulosic materials: evaluation for use in biobed systems. Chemosphere 80:914–921

    Article  CAS  Google Scholar 

  • Kuo HC, Juang DF, Yang L, Kuo WC, Wu YM (2014) Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi Int. J Environ Sci Technol 11:1661–1668

    Article  CAS  Google Scholar 

  • Lentzarizos C, Avramides EJ, Kokkinaki K (2006) Residues of azoxystrobin from grapes to raisins. J Agric Food Chem 54:138–141

    Article  CAS  Google Scholar 

  • McEldoon JP, Pokora AR, Dordick JS (1995) Lignin peroxidase type activity of soybean peroxidase. Enzyme Microb Technol 17:359–365

    Article  CAS  Google Scholar 

  • Mitton FM, Mariana G, Aranzazu P, Karina S (2012) Effects of amendments on soil availability and phytoremediation potential of aged p, p_-DDT, p, p_-DDE and p, p_-DDD residues by willow plants (Salix sp.). J Hazard Mater 203–204:62–68

    Article  Google Scholar 

  • Romeh AA (2014) Phytoremediation of cyanophos insecticide by Plantago major L. in water. J Environ Health Sci Eng 12:2–8

    Article  Google Scholar 

  • Romeh AA, Mohammed YH (2013) Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett 11:163–170

    Article  CAS  Google Scholar 

  • Roy S, Ihantola R, Hanninen O (1992) Peroxidase activity in lake macrophytes and its relation to pollution tolerance. Environ Exp Bot 32:457–464

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2004) Evaluation of surfactants/cosolvents for desorption/solubilization of phenanthrene in clay soils. Int J Environ Stud 61:587–604

    Article  CAS  Google Scholar 

  • Sharifa AA, Neoh YL, Iswadi MI, Khairul O, Abdul Halim MM, Jamaludin Mohamed A, Hing HL (2008) Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Ann Microsc 8:42–44

  • Singh N, Shashi B (2010) Effect of moisture and compost on fate of azoxystrobin in soils. J Environ Sci Health Part B 45:676–681

    Article  CAS  Google Scholar 

  • Singh N, Singh SB, Mukerjee I, Gupta S, Gajbhiye VT, Sharma PK, Goel M, Dureja P (2010) Metabolism of 14C-azoxystrobin in water at different pH. J Environ Sci Health Part B 45:123–127

    Article  CAS  Google Scholar 

  • Smith E, Smith J, Naidu R, Juhasz A (2004) Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water Air Soil Pollut 151:71–86

    Article  CAS  Google Scholar 

  • Sundravadana S, Alice D, Samiyappana R, Kuttalamb S (2008) Determination of azoxystrobin residue by UV detection high performance liquid chromatography in mango. J Braz Chem Soc 19:60–63

    Article  CAS  Google Scholar 

  • Tahmasbian A, Sinegani AS (2014) Chelate-assisted phytoextraction of cadmium from a mine soil by negatively charged sunflower. Int J Environ Sci Technol 11:695–702

    Article  CAS  Google Scholar 

  • Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73

    Article  CAS  Google Scholar 

  • Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18:112–114

    CAS  Google Scholar 

  • Turgut C (2005) Uptake and modeling of pesticides by roots and shoots of parrot feather (Myriophyllum aquaticum). Environ Sci Pollut Res 12:342–346

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1997) Pesticide fact sheet: azoxystrobin. http://www.epa.gov/opprd001/ factsheets/azoxystr.pdf

  • Ussawarujikulchai A, LahaS Tansel B (2008) Synergistic effects of organic contaminants and soil organic matter on the soil–water partitioning and effectiveness of a nonionic surfactant (Triton X-100). Bioremed J 12:88–97

    Article  CAS  Google Scholar 

  • Wang P, Keller AA (2009) Partitioning of hydrophobic pesticides within a soil–water–anionic surfactant system. Water Res 43:706–714

    Article  CAS  Google Scholar 

  • Wang S, Haibin S, Yanping L (2013) Dissipation and residue of azoxystrobin in banana under field Condition. Environ Monit Assess 185:7757–7761

    Article  CAS  Google Scholar 

  • Wu N, Zhang S, Huang H, Shan X, Christie P, Wang Y (2008) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environ Pollut 151:569–575

    Article  CAS  Google Scholar 

  • Xu J, Xu Y, Shugui D (2006) Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere 62:1630–1635

    Article  CAS  Google Scholar 

  • Yan-Zheng G, Ling W, Zhu L, Zhao B, Zheng Q (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418

    Article  Google Scholar 

  • Yao B, Gu X, Jing S, He L, Xiao N (2009) Microbial activity and degradation of atrazine in poplar rhizosphere during the soil phytoremediation. Scientia Silvae Sinicae 45:149–152

    CAS  Google Scholar 

  • Yu X, Gu JD (2008) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17:143–150

    Article  CAS  Google Scholar 

  • Zhang SJ, Li TX, Huang HG (2014) Phytoremediation of cadmium using plant species of Athyrium wardii (Hook.). Int J Environ Sci Technol 11(757):764

    Google Scholar 

  • Zhao BW, Zhu LZ, Gao YZ (2005) A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfonate. J Hazard Mater 119:205–211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is most grateful to the Central Laboratory for soil, food and feedstuffs, Faculty of Development and Technology, Zagazig University, Zagazig, Egypt, for their collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Romeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 166 kb)

Supplementary material 2 (PPTX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romeh, A.A. Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil. Int. J. Environ. Sci. Technol. 12, 3509–3518 (2015). https://doi.org/10.1007/s13762-015-0772-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0772-7

Keywords

Navigation