Skip to main content
Log in

Chlorpyrifos insecticide uptake by plantain from polluted water and soil

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Chlorpyrifos is a common organophosphorus insecticide used for crop protection. Chlorpyrifos use has induced heath issues and water pollution. Such issues may be solved by phytoremediation, which is the use of plants for the cleanup of pollutants. Here, we tested Plantago major L. to clean water and soils under laboratory conditions. Results show that the concentration of chlorpyrifos residues after 5 days exposure reached 36.86 μg/g in roots and 13.93 μg/g in upper plant tissues. Gas chromatography–mass spectrometry (GC–MS) analysis of chlorpyrifos metabolites suggests the formation of 3, 5, 6-trichloro-2-pyridinol (TCP) and diethyl 3,5,6-trichloropyridin-2-yl phosphate (chlorpyrifos-oxon). Chlorpyrifos-oxon was detected in the roots and the leaves after 2 h of testing. After 24 h of testing, the degradation product chlorpyrifos-oxon increased in the roots and the leaves then decreased gradually until the end of testing. TCP levels increased gradually to 192 h then decreased until the end of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azmat R, Haider S, Riaz M (2009) An inverse relation between Pb2+and Ca2+ions accumulation in Phaseolus mungo and Lens culinaris under Pb stress. Pak J Bot 41:2289–2295

    CAS  Google Scholar 

  • Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3, 5, 6-trichloro-2-pyridinol), with depth in soil profiles. Aust J Soil Res 41:749–760

    Article  CAS  Google Scholar 

  • Bauriedel WR, Miller JH (1986) The metabolic fate of 14C-chlorpyrifos applied to field corn at planting (soil application) and in mid-season (foliar application). Dow Elanco, Indianapolis (IN) (unpublished report)

    Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Smith S, Cooper CM (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2002) Plant–soil-contaminant specificity affects phytoremediation of organic contaminants. Int J Phytorem 417–26

  • Deepali L, Korade M, Fulekar H (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350

    Article  Google Scholar 

  • Derbalaha AS, Belalb EB (2008) Biodegradation kinetics of cymoxanil in aquatic system. Chem Ecol 24:169–180

    Article  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    CAS  Google Scholar 

  • Duirk S E, Timothy W C (2004) Organophosphate pesticide degradation under drinking water treatment conditions. EPA/600/R-05/103 August 2005 Washington, DC 20460

  • Duirk SE, Tarr JC, Collette TW (2008) Chlorpyrifos transformation by aqueous chlorine in the presence of bromide and natural organic matter. J Agric Food Chem 56:1328–1335

    Article  CAS  Google Scholar 

  • Dzantor EK, Chekol T, Vough LR (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health 35:1645–1661

    Article  Google Scholar 

  • EL-Sheamy MK, Hussein MZ, El-Sheak AA, Khater AA (1991) Residues behavior of certain organophosphorus and carbamate insecticides in water and fish. Egypt J Appl Sci 6:94–102

    Google Scholar 

  • EPA (1995) Review of chlorpyrifos poisoning data. EPA, Washington, DC, pp 1–46

    Google Scholar 

  • EPA (1997) Review of Chlorpyrifos Poisoning Data. EPA, Washington, DC

    Google Scholar 

  • Feng Y, Racke KD, Bollag JM (1997) Isolation and characterization of a chlorinated pyridinol degrading bacterium. Appl Environ Microbiol 63:4096–4098

    CAS  Google Scholar 

  • Gao J, WayneGarrison A, Hoehamer C, Mazur CS, LeeWolfe N (2000) Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48:6114–6120

    Article  CAS  Google Scholar 

  • Gomaa EA, Belal MH (1975) Determination of dimethoate residues in some vegetable and cotton plant. Zagazig J Agric Res 2:215–221

    Google Scholar 

  • Hulster A, Muller JF, Marschner J (1994) Soil- plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Article  Google Scholar 

  • Sharifa AA, NeohYL, Iswadi,MI, Khairul O, AbdulHalim M, Jamaludin M, Mohamed A, Hing HL (2008) Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Ann Microsc 8 April

  • Jin H, Webster GRB (1997) Dissipation of chlorpyrifos, oxon and 3, 5, 6-trichloro-2-pyridinol in litter and elm forest soil. J Environ Sci Health Part B 32:879–900

    Article  Google Scholar 

  • Kenaga EE, Whitnoy WK, Hardy JL, Doty AE (1965) Laboratory tests with dursban insecticide. J Econ Entomol 58:1043

    CAS  Google Scholar 

  • Khan NU, Bhavya V, Nazeeb I, Paddu KS (2011) Phytoremediation using an indigenous crop plant (wheat): the uptake of methyl parathion and metabolism of p-nitrophenol. Indian J Sci Technol 4:1661–1667

    CAS  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449

    Article  CAS  Google Scholar 

  • Lal S, Lal R (1987) Bioaccumulation, metabolism and effects of DDT, fenitrothion and chlorpyrifos on Saccharomyces cerevisiae. Arch Environ Contam Toxicol 16:753–757

    Article  CAS  Google Scholar 

  • Lee KY, Stuart ES, Sharon LD (2012) Phytoremediation of chlorpyrifos by populus and salix. Int J Phytoremediat 14:48–61

    Article  Google Scholar 

  • Liu B, McConnell LL, Torrents A (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere 44:1315–1323

    Article  CAS  Google Scholar 

  • Luke MA, Froberg JE, Doose GM, Masumato HT (1981) Improved multiresidue gas chromatographic determination of orgonophosphorus, orgononitrogen and orgonohalogene pesticides in procedure, using flame photometric and electrolytic conductivity detectors. J Assoc Off Anal Chem 64:1187–1195

    Google Scholar 

  • Lytle JS, Thomas FL (2009) Uptake and loss of chlorpyrifos and atrazine by Juncus effusus L. in a mesocosm study with a mixture of pesticides. Environ Toxicol Chem 21:1817–1825

    Google Scholar 

  • Mallick BK, Banerji A, Shakil NA, Sethunathan NN (1999) Bacterial degradation of chlorpyrifos in pure culture and in soil. Bull Environ Contam Toxicol 62:48–55

    Article  CAS  Google Scholar 

  • Martı´nez Vidal JL, Egea Gonza´ lez FJ, Martı´nez Galera M, Castro Cano ML (1998) Diminution of chlorpyrifos and chlorpyrifos oxon in tomatoes and green beans grown in greenhouses. J Agric Food Chem 46:1440–1444

    Article  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Wiley, Inc, pp 1–58

    Chapter  Google Scholar 

  • Meharg AA, Killham K (1990) Carbon distribution with in the plant and rhizosphere in laboratory and field grown Lolium perenne at different stages of development. Soil Biol Biochem 22:471–477

    Article  CAS  Google Scholar 

  • Menon P, Gopal M, Prasad R (2005) Dissipation of chlorpyrifos in two soil environments of semi-arid India. J Environ Sci Health 39:517–531

    Article  Google Scholar 

  • Metcalf RL (1974) A laboratory model ecosystem to evaluate compounds producing biological magnification. Essays Toxicol 5:17–28

    CAS  Google Scholar 

  • Moore MT, Schulz R, Cooper CM, Smith S, Rodgers JH (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835

    Article  CAS  Google Scholar 

  • Mori MN, Oikawa H, Sampam MHO, Duarte CL (2006) Degradation of chlorpyrifos by ionizing radiation. J Radioanal Nucl Chem 270:99–102

    Article  CAS  Google Scholar 

  • Prasertsup P (2011) Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). Int J Phytoremediation 13:383–395

    Article  Google Scholar 

  • Pugliese P, Molto JC, Damiani P, Marin R, Cossignani L, Manes J (2004) Gas chromatography evaluation of pesticide residue contents in nectarines after non-toxic washing treatments. J Chromatogr A 1050:185–191

    CAS  Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1–154

    Article  CAS  Google Scholar 

  • Richardson RJ (1995) Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: a critical review of the literature. Toxicol Environ Health 44:135–165

    Article  CAS  Google Scholar 

  • Roy S, Ihantola R, Hanninen O (1992) Peroxidase activity in lake macroPhytes and its relation to pollution tolerance. Environ Exp Bot 32:457464

    Article  Google Scholar 

  • Sa´nchez ME, Me´ndez R, Go´mez X, Martı´n-Villacorta J (2003) Determination of Diazinon and Fenitrothion in Environmental Water and Soil Samples by HPLC. J Liq Chromatogr Relat Technol 26:483–497

    Article  Google Scholar 

  • Sapozhnikova Y, Bawardi O, Schlenk D (2004) Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere 55:797–809

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan AW, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl environ microbial 69:5198–5206

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2006) Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bull Environ Contam Toxicol 69:181–188

    Article  Google Scholar 

  • Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Stahr HM (1990) Application of the microtox system to assess the toxicity of pesticides and their hydrolysis metabolites. Bull Environ Contam Toxicol 44:254–259

    Article  CAS  Google Scholar 

  • Spacie A, Hamelink JL (1985) Bioaccumulation. In: Rand PM, Petrocelli SR (eds) Fundamentals of aquatic toxicology: methods and applications. Hemisphere Publishers, NY, pp 497–534

    Google Scholar 

  • Sparling DW, Fellers G (2007) Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environ Pollut 147:535–539

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18:112–114

    CAS  Google Scholar 

  • Tomlin CDS (2004) The pesticide Manual, 13th edn edn. British Crop Protection council, Farniham, p 184

    Google Scholar 

  • Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manage Sci 56:767–778

    Article  CAS  Google Scholar 

  • Turgut C (2005) Uptake and modeling of pesticides by roots and shoots of parrot feather (Myriophyllum aquaticum). Environ Sci Pollut Res 12:342–346

    Article  CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1988) New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces. Arch Environ Contam Toxicol 17:183–188

    Article  CAS  Google Scholar 

  • Wang W (1986) Toxicity tests of aquatic pollutants by using common duckweed. Environ Poll 11:1–14

    Article  CAS  Google Scholar 

  • Wang MJ, Jones KC (1994) Behaviour and fate of chlorobenzenes (CBs) introduced into soil–plant systems by sewage sludge application: a review. Chemosphere 28:1325–1360

    Article  CAS  Google Scholar 

  • Wang LG, Jiang X, Yan DY (2004) Comparison of two procedures for extraction and cleanup of organophosphorus and pyrethroid pesticides in sediment. Pedosphere 14:229–234

    CAS  Google Scholar 

  • Wang LG, Jiang X, Mao YM, Zhao ZH, Bian YR (2005) Organophosphorus pesticide extraction and cleanup from soils and measurement using GC-NPD. Pedosphere 15:386–394

    CAS  Google Scholar 

  • Wang L, Jiang X, Yan D, Wu J, Bian Y, Wang F (2007) Behavior and fate of chlorpyrifos introduced into soil crop systems by irrigation. Chemosphere 66:391–396

    Article  CAS  Google Scholar 

  • Williamson LN, Terry AV, Bartlett MG (2006) Determination of chlorpyrifos and its metabolites in rat brain tissue using coupled-column liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2689–2695

    Article  CAS  Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2- pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  CAS  Google Scholar 

  • Yu YL, Wu XM, Li SN, Fang H, Zhan HY, Yu JQ (2006) An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environ Pollut 141:428–433

    Article  CAS  Google Scholar 

  • Zhang ZY, Zhang CZ, Liu XJ, Hong XY (2006) Dynamics of pesticide residues in the autumn Chinese cabbage (Brassica chinensis L.) grown in open fields. Pest Manag Sci 62:350–355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is most grateful to the laboratory staff of pesticides analysis and environmental pollution Laboratory, Department of plant production, Faculty of Development and Technology, Zagazig University, Zagazig, Egypt for their collaboration in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ali Romeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeh, A.A., Hendawi, M.Y. Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett 11, 163–170 (2013). https://doi.org/10.1007/s10311-012-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0392-0

Keywords

Navigation