Skip to main content
Log in

Gene Expression of Secale cereale (Fall Rye) Grown in Petroleum Hydrocarbon (PHC) Impacted Soil With and Without Plant Growth-Promoting Rhizobacteria (PGPR), Pseudomonas putida

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation employs plants to sequester, degrade, and transform contaminants. This remediation technology depends on sufficient plant growth, often not achievable with high contaminant concentrations. One way to improve plant growth on impacted soils is by using plant growth-promoting rhizobacteria (PGPR). PGPR are naturally occurring soil microbes that stimulate plant growth through variety of means. We examined what changes in gene expression occurred in a grass species Secale cereale treated with PGPR, Pseudomonas putida PGPR (UW4), grown in petroleum hydrocarbon (PHC) impacted soil. UW4 promoted plant growth on the PHC impacted soil. Using differential display polymerase chain reaction (ddPCR), six genes were identified based on their altered expression as an effect of PHC exposure and plant PGPR treatment. The changes in levels of expression of selected genes were measured using quantitative PCR (qPCR). There was upregulation of all six genes examined, two of which were statistically significant. In roots, two genes were upregulated significantly and one gene appeared to be downregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar, T. A., Lampi, M. A., & Greenberg, B. M. (2005). Identification of six differentially expressed genes in response to copper exposure in the aquatic plant Lemna gibba (duckweed). Environmental Toxicology and Chemistry, 24(7), 1705–1715.

    Article  CAS  Google Scholar 

  • Ali, G., & Reddy, A. (2008). Regulation of alternative splicing of pre-mRNAs by stresses. Current Topics in Microbiology and Immunology, 326, 257–275.

    CAS  Google Scholar 

  • Alkio, M., Tabuchi, T. M., Wang, X., & Colón-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56(421), 2983–2994.

    Article  CAS  Google Scholar 

  • Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79, 273–276.

    Article  CAS  Google Scholar 

  • Babu, S. T., Tripuranthakam, S., & Greenberg, B. M. (2005). Biochemical responses of the aqatic higher plant Lemna gibba to a mixture of copper and 1,2-dihydroxyanthraquinone: synergistic toxicity via reactive oxygen species. Envionmental Toxicology and Chemistry, 24(12), 3030–3036.

    Article  CAS  Google Scholar 

  • Bag, J., & Bhattacharjee, R. B. (2010). Multiple levels of post-transcriptional control of expression of poly(A)-binding protein. RNA Biology, 7(1), 5–12.

    Article  CAS  Google Scholar 

  • Banks, M. K., Schwab, A. P., Liu, B., Kulakow, P. A., Smith, J. S., & Kim, R. (2003). The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Advances in Biochemical Engeneering and Biotechnology, 78, 75–96.

    Article  CAS  Google Scholar 

  • Bouvier, F., Backhaus, R. A., & Camara, B. (1998). Induction and control of chromoplast-specific carotenoid genes by oxidative stress. The Journal of Biological Chemistry, 273(46), 30661–30669.

    Article  Google Scholar 

  • Burken, J. G. (2003). Uptake and metabolism of organic compounds: Green-liver model. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation transformation and control of contaminants (pp. 59–84). New Jersey: Wiley-Interscience.

    Google Scholar 

  • Chekanova, J. A., & Belostotsky, D. A. (2003). Evidence that poly(A) biding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export. RNA, 9, 1476–1490.

    Article  CAS  Google Scholar 

  • Crismani, W., Baumann, U., Sutton, T., Shirley, N., Webster, T., Spangenberg, G., et al. (2006). Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 7, 267.

    Article  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715–719.

    CAS  Google Scholar 

  • Czarny, J. C. (2008). Effects of a bacterial ACC on plant growth-promotion. Waterloo: University Waterloo.

    Google Scholar 

  • Davis, L. G., Dibner, M. D., & Battey, J. B. (1986). Preparation and analysis of RNA from eukaryotic cells (Basic methods in molecular biology). New York: Elsevier Science Publishing Co.

    Google Scholar 

  • Diener, L. C., Shulte, P. M., Dixon, D. G., & Greenberg, B. M. (2004). Optimization of differential display polymerase chain reaction as a bioindicator for the cladoceran Daphnia magna.

  • Gallie, D. R., Le, H., Tanguay, R. L., & Browning, K. S. (1998). Translation initiation factors are differentially regulated in cereals during development and follwing heat shock. The Plant Journal, 14(6), 715–722.

    Article  CAS  Google Scholar 

  • Gerhardt, K. E., Lampi, M. A., & Greenberg, B. M. (2008). The effects of far-red light on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. Photochemistry and Photobiology, 84(1445-1454).

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2003). Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5), 383–393.

    Article  CAS  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119, 329–339.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. U. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.

    Article  CAS  Google Scholar 

  • Grünewald, K., Eckert, M., Hirschberg, J., & Hagen, C. (2000). Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiology, 122, 1261–1268.

    Article  Google Scholar 

  • Gurska, J., Wang, W., Gerhardt, K. E., Khalid, A., Isherwood, D. M., Huang, X.-D., et al. (2009). Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science and Technology, 43(12), 4472–4479.

    Article  CAS  Google Scholar 

  • Heinonsalo, J., Jorgensen, K. S., Kielo, H., & Sen, R. (2000). Effects of Pinus sylvestris root growth and micorrhizosphere development on bacteria carbon sourse utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils. Canadian Journal of Microbiology, 46, 451–464.

    Article  CAS  Google Scholar 

  • Hontzeas, N., Saleh, S. S., & Glick, B. R. (2004). Changes in gene expression in canola roots induced by ACC-deaminase-containing-plant-growth-promoting bacteria. MPMI, 17(8), 865–871.

    Article  CAS  Google Scholar 

  • Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1), 139–147.

    Article  CAS  Google Scholar 

  • Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004a). Responses of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453–463.

    Article  CAS  Google Scholar 

  • Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004b). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution, 130(3), 465–476.

    Article  CAS  Google Scholar 

  • Hutchinson, S. L., Schwab, A. P., & Banks, M. K. (Eds.). (2003). Biodegradation of petroleum hydrocarbons in the rhizosphere (phytotransformation: Transformation and control of contaminants). Iowa City: Wiley Interscience.

    Google Scholar 

  • Janssen, B.-J., Williams, A., Chen, J.-J., Mathern, J., Hake, S., & Sinha, N. (1998). Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Molecular Biology, 36(417-425).

  • Jarosova, J., & Kundu, J. K. (2010). Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. Plant Biology, 10(146).

  • Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., & Han, T. (2008). Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9(59), 1–14.

    Google Scholar 

  • Kacálková, L., & Tlustoš, P. (2011). The uptake of persistent organic pollutants by plants. Central European Journal of Biology, 6(2), 223–235.

    Google Scholar 

  • Kawaguchi, R., & Bailey-Serres, J. (2002). Regulation of translational initiation in plants. Current Opinion in Plant Biology, 5, 460–465.

    Article  CAS  Google Scholar 

  • Kawaguchi, R., Girke, T., Bary, E., & Bailey-Serres, J. (2004). Differential mRNA translation contributes to gene regulation under non-stess and dehydration stress conditions in Arabidopsis thaliana. Plant Journal, 38, 823–839.

    Article  CAS  Google Scholar 

  • Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21, 829–837.

    CAS  Google Scholar 

  • Kim, M., Ahn, J.-W., Song, K., Paek, K.-H., & Pai, H.-S. (2002). Forkhead-associated domains of the tobacco NtFHA1 transcription activator and the yeast Fhl1 forkhead transcription factor are functionally conserved. The Journal of Biological Chemistry, 277(41), 38781–38790.

    Article  CAS  Google Scholar 

  • Kozlov, G., Trempe, J.-F., Khaleghpour, K., Kahvejia, A., Ekiel, I., & Gehring, K. (2001). Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. PNAS, 98(8), 4409–4413.

    Article  CAS  Google Scholar 

  • Le, H., Browning, K. S., & Gallie, D. R. (2000). The phosphorylation stat of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, eIF4B. The Journal of Biological Chemistry, 275(23), 17452–17462.

    Article  CAS  Google Scholar 

  • Le, H., & Gallie, D. R. (2000). Sequence diversity and conservation of the poly(A)-binding protein in plants. Plant Science, 152, 101–114.

    Article  CAS  Google Scholar 

  • Le, H., Tanguay, R., Balasta, M., Wei, C.-C., Browning, K. S., Metz, A., et al. (1997). The translation initiation factors eIFiso4G and eIF-4B interact with the poly(A)-binding protein to increase its RNA binding affinity. Journal of Biological Chemistry, 272, 16247–16255.

    Article  CAS  Google Scholar 

  • Li, Z.-H., Matthews, P. D., Burr, B., & Wurtzel, E. T. (1996). Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoids biosynthetic pathway. Plant Molecular Biology, 30, 269–279.

    Article  CAS  Google Scholar 

  • Liu, H., Weisman, D., Ye, Y.-B., Huang, Y.-H., Colón-Carmona, A., & Wang, Z.-H. (2009a). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176(3), 375–382.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, H., Pan, Q., Yang, H., Zhan, J., & Huang, W. (2009b). The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. Planta, 229(1087-1098).

  • Livak, K., & Schmittgen, T. (2001). Analysis of releative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  • Lynch, J. M. (Ed.). (1990). The rhizosphere (Wiley Series in Ecological and Applied Microbiology). New York: Wiley.

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  Google Scholar 

  • Migocka, M., & Papierniak, A. (2010). Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Molecular Breeding. doi:10.1007/s11032-010-9487-0.

    Google Scholar 

  • Nelson, D. R. (2006). Plant cytochrom P450s from moss to poplar. Phytochemistry Reviews, 5, 193–204.

    Article  CAS  Google Scholar 

  • Nelson, D. R., Schuler, M. A., Paquette, S. M., Werck-Reichhart, D., & Bak, S. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and psuedogenes from a monocot and a dicot. Plant Physiology, 135, 756–772.

    Article  CAS  Google Scholar 

  • Nicolai, M., Roncato, M., Canoy, A., Rouquie, D., Sarda, X., Reyssinet, G., et al. (2006). Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells indentifies cell proliferation and chromatin structure as targets of translational control. Plant Physiology, 141, 663–673.

    Article  CAS  Google Scholar 

  • Nie, M., Yang, Q., Jiang, L.-F., Fang, C.-M., Chen, J.-K., & Li, B. (2010). Do plants modulate biomass allocation in response to petroleum pollution? Biology Letters, 6(811-814).

  • Paškova, V., Kilscherová, K., Feldmannova, M., & Bláha, L. (2009). Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environmental Toxicology and Chemistry, 25(12), 3238–3245.

    Article  Google Scholar 

  • Peña-Castro, J. M., Barrera-Figueroa, B. E., Fernández-Linares, L., Ruiz-Medrano, R., & Xoconostle-Cázares, B. (2006). Isolation and identificatin of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum stress. Plant Science, 170, 724–731.

    Article  Google Scholar 

  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. doi:10.1034/j.1399-3054.2003.00086.x.

    Article  CAS  Google Scholar 

  • Pfaffl, M. (2006). Relative quantification. In M. T. Dorak (Ed.), Real-time PCR. New York: Taylor & Francis.

    Google Scholar 

  • Pierrat, O. A., Mikitova, V., Bush, M. S., Browning, K. S., & Doonan, J. H. (2007). Control of protein translation by phosphorylation of the mRNA 5'-cap-binding complex. Biochemical Society Transactions, 35, 1635–1637.

    Article  Google Scholar 

  • Preiss, T., & Hentze, M. (2003). Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays, 25(12), 1201–1211.

    Article  CAS  Google Scholar 

  • Robinson, S. L., Novak, J. T., Widdowson, M. A., Crosswell, S. B., & Fetterolf, G. J. (2003). Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in an aged creosote-contaminated surface soil. Journal of Environmental Engineering, 129(3), 232–240.

    Article  CAS  Google Scholar 

  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Totowa: Humana Press.

    Google Scholar 

  • Salguero, A., de la Morena, B., Vigara, J., Vega, J. M., Vilchez, C., & León, R. (2003). Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering, 20,  249–253.

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning, a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sandermann, H. J. (1994). Higher plant metablism of xenobiotics: the “green liver” concept. Pharmacogenetics, 4, 225–241.

    Article  CAS  Google Scholar 

  • Sandmann, G. (2002). Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiologia Plantarum, 116, 431–440.

    Article  CAS  Google Scholar 

  • Schwitzguébel, J.-P., & Vanek, T. (2003). Some fundamental advances for xenobiotic chemicals. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants. New Jersey: Wiley.

    Google Scholar 

  • Shah, S., Li, J., Moffat, B. A., & Glick, B. R. (1998). Isolation and characterization of ACC deaminase genes for two different plant growth promoting rhizobacteria. Canadian Journal of Microbiology, 44, 833–843.

    Article  CAS  Google Scholar 

  • Shen, H., Chen, J., Wang, Z., Yang, C., Sasaki, T., Tamamoto, Y., et al. (2006). Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorous starvation. Journal of Experimental Botany, 57(6), 1353–1362.

    Article  CAS  Google Scholar 

  • Testone, G., Condello, E., Verde, I., Caboni, E., Iannelli, M. A., Bruno, L., et al. (2009). The peach (Prunus persica [L.] Batsch) homeobox gene KNOPE3, which encodes a class 2 knotted-like transcription factor, is regulated during leaf development and triggered by sugars. Molecular Genetics and Genomics, 282, 47–64.

    Article  CAS  Google Scholar 

  • Timmusk, S., & Wagner, E. G. H. (1999). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress response. Molecular Plant-Microbe Interactions, 12(11), 951–959.

    Article  CAS  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 1–12.

    Article  Google Scholar 

  • Veselov, A. P., Kuraganova, L. N., Likhacheva, A. V., & Sushkova, U. A. (2002). Possible regulatory effects of lipid peroxidation on the H+-ATPase activitiy of the plasmalemma under stress conditions. Russian Journal of Plant Physiology, 49(3), 344–348.

    Article  CAS  Google Scholar 

  • Wade, J. T., Hall, D. B., & Struhl, K. (2004). The transcription factor lfh1 is a key regulator of yeast ribosomal protein genes. Nature, 432(23/30).

  • Wang, X., & Seed, B. (2006). High-throughput primer and probe design. In M. T. Dorak (Ed.), Real-time PCR. New York: Taylor & Francis.

    Google Scholar 

  • Weisman, D., Alkio, M., & Colón-Carmona, A. (2010). Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biology, 10(59).

  • Werck-Reichhart, D., & Feyereisen, R. (2000). Cytochromes P450: a success story. Genome Biology, 1(6), 1–9.

    Article  Google Scholar 

  • Whitbred, J. M., & Schuler, M. A. (2000). Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiology, 124, 47–58.

    Article  CAS  Google Scholar 

  • Xie, F., Frazier, T. P., & Zhang, B. (2010). Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta, 232, 417–434.

    Article  CAS  Google Scholar 

  • Zhou, S., Boone, B., & Levy, S. (2007). Microarray analysis of genes affected by salt stress in tomato. African Journal of Environmental Science and Technology, 1(2), 14–26.

    Google Scholar 

  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors are thankful to Dr. Julie Nykamp for help with ddPCR experiments and to Dr. Jennifer Stearns and Laura Sauder for help with qPCR protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Greenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurska, J., Glick, B.R. & Greenberg, B.M. Gene Expression of Secale cereale (Fall Rye) Grown in Petroleum Hydrocarbon (PHC) Impacted Soil With and Without Plant Growth-Promoting Rhizobacteria (PGPR), Pseudomonas putida . Water Air Soil Pollut 226, 308 (2015). https://doi.org/10.1007/s11270-015-2471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2471-x

Keywords

Navigation