Skip to main content
Log in

n-Pentanol Lubrication of Silica Layers Passivated with Hydroxyl Groups Under Constant Shear Stress and Load and Isothermal Conditions

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We conducted molecular dynamics simulations to study the frictional behavior of hydroxyl-passivated silica layers lubricated with n-pentanol chains under constant shear stress, constant normal load, and isothermal conditions. We analyzed the resulting single, multiple, and continuous sliding regimes for several shear stresses at a single normal load and proposed a sliding mechanism between the n-pentanol chains’ methyl groups. The critical ordering of hydrogen bonds between hydroxyl groups on the surface and the lubricant is necessary to reach the stationary state, where velocity follows a logarithmic dependence on shear stress up to a critical speed of 20 nm/ns. Stationary states corresponding to pure single slip and continuous sliding behaviors showed normal speed distributions, while multiple slip behavior showed near normal and bimodal distributions. In the single slip behavior, layers show constant displacements of 0.27 Å, representing half the separation of two surface hydroxyls in the sliding direction. The lubricant experienced minor volume expansions throughout the range of studied shear stresses due to an increasing layer separation at the contact surface and increasing tilting of the lubricant chains.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007). https://doi.org/10.1016/S1748-0132(07)70140-8

    Article  Google Scholar 

  2. Asay, D.B., Dugger, M.T., Kim, S.H.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2008). https://doi.org/10.1007/s11249-007-9283-0

    Article  CAS  Google Scholar 

  3. He, X., Liu, Z., Ripley, L.B., Swensen, V.L., Griffin-Wiesner, I.J., Gulner, B.R., McAndrews, G.R., Wieser, R.J., Borovsky, B.P., Wang, Q.J., et al.: Empirical relationship between interfacial shear stress and contact pressure in micro- and macro-scale friction. Tribol. Int. 155, 106780 (2021). https://doi.org/10.1016/j.triboint.2020.106780

    Article  CAS  Google Scholar 

  4. Khomenko, A., Boyko, D., Khomenko, K.: Atomistic tribological investigation of ultrathin layer of carbon disulfide between diamond surfaces. Mol. Cryst. Liq. Cryst. 719, 1–10 (2021). https://doi.org/10.1080/15421406.2020.1860531

    Article  CAS  Google Scholar 

  5. Khomenko, A.V., Boyko, D.V., Zakharov, M.V.: Molecular dynamics of a thin liquid argon layer squeezed between diamond surfaces with a periodic relief. J. Frict. Wear 39, 152–157 (2018). https://doi.org/10.3103/S106836661802006X

    Article  Google Scholar 

  6. Khomenko, A.V., Lyashenko, I.A., Borisyuk, V.N.: Multifractal analysis of stress time series during ultrathin lubricant film melting. Fluct. Noise Lett. 09, 19–35 (2010). https://doi.org/10.1142/S0219477510000046

    Article  Google Scholar 

  7. Gao, S., Yang, L.H., Gan, Y., Chen, Q.: The influence of sliding speed on the friction behavior of silica surface. ACS Omega 6, 3384–3389 (2021). https://doi.org/10.1021/acsomega.0c05897

    Article  CAS  Google Scholar 

  8. Li, C., Tang, W., Tang, X.-Z., Yang, L., Bai, L.: A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems. Tribol. Int. 167, 107356 (2022). https://doi.org/10.1016/j.triboint.2021.107356

    Article  CAS  Google Scholar 

  9. de Beer, S., Kenmoé, G.D., Müser, M.H.: On the friction and adhesion hysteresis between polymer brushes attached to curved surfaces: rate and solvation effects. Friction 3, 148–160 (2015). https://doi.org/10.1007/s40544-015-0078-2

    Article  Google Scholar 

  10. Hu, C., Yi, C., Bai, M., Lv, J., Tang, D.: Molecular dynamics study of the frictional properties of multilayer MoS2. RSC Adv. 10, 17418–17426 (2020). https://doi.org/10.1039/D0RA00995D

    Article  CAS  Google Scholar 

  11. Pan, L., Yu, H., Lu, S., Lin, G.: Effects of surface nanostructure on boundary lubrication using molecular dynamics. Nanotechnol. Precis. Eng. 4, 33005 (2021). https://doi.org/10.1063/10.0005222

    Article  CAS  Google Scholar 

  12. Zhou, Y., Huang, Y., Li, J., Zhu, F.: Effect of water film on the nano-scratching process of 4H-SiC under the constant load. Tribol. Int. 175, 107802 (2022). https://doi.org/10.1016/j.triboint.2022.107802

    Article  CAS  Google Scholar 

  13. Gattinoni, C., Maćkowiak, S., Heyes, D.M., Brańka, A.C., Dini, D.: Boundary-controlled barostats for slab geometries in molecular dynamics simulations. Phys. Rev. E 90, 43302 (2014). https://doi.org/10.1103/PhysRevE.90.043302

    Article  CAS  Google Scholar 

  14. Manzato, C., Foster, A.S., Alava, M.J., Laurson, L.: Friction control with nematic lubricants via external fields. Phys. Rev. E 91, 12504 (2015). https://doi.org/10.1103/PhysRevE.91.012504

    Article  CAS  Google Scholar 

  15. Chen, S., Guo, Z., Zhang, H., Pagonabarraga, I., Zhang, X.: Maximizing friction by liquid flow clogging in confinement. Eur. Phys. J. E 45, 60 (2022). https://doi.org/10.1140/epje/s10189-022-00208-z

    Article  CAS  Google Scholar 

  16. Hou, Y., Zhang, H., Wu, J., Wang, L., Xiong, H.: Study on the microscopic friction between tire and asphalt pavement based on molecular dynamics simulation. Int. J. Pavement Res. Technol. 11, 205–212 (2018). https://doi.org/10.1016/j.ijprt.2017.09.001

    Article  Google Scholar 

  17. Cui, S.T., Cummings, P.T., Cochran, H.D.: Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. J. Chem. Phys. 114, 7189–7195 (2001). https://doi.org/10.1063/1.1359736

    Article  CAS  Google Scholar 

  18. Carrillo, J.-M.Y., Russano, D., Dobrynin, A.V.: Friction between brush layers of charged and neutral bottle-brush macromolecules. Molecular dynamics simulations. Langmuir 27, 14599–14608 (2011). https://doi.org/10.1021/la203525r

    Article  CAS  Google Scholar 

  19. Brinkmann, K., Teichler, H.: Flow state in molecular-dynamics-simulated deformed amorphous ${\mathrm{Ni}}_{0.5}{\mathrm{Zr}}_{0.5}$. Phys. Rev. B. 66, 184205 (2002). https://doi.org/10.1103/PhysRevB.66.184205

    Article  CAS  Google Scholar 

  20. Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006). https://doi.org/10.1103/PhysRevLett.97.136106

    Article  CAS  Google Scholar 

  21. Krylov, S.Y., Frenken, J.W.M.: The physics of atomic-scale friction: Basic considerations and open questions. Phys. status solidi 251, 711–736 (2014). https://doi.org/10.1002/pssb.201350154

    Article  CAS  Google Scholar 

  22. Wang, Z.-J., Ma, T.-B., Hu, Y.-Z., Xu, L., Wang, H.: Energy dissipation of atomic-scale friction based on one-dimensional Prandtl–Tomlinson model. Friction 3, 170–182 (2015). https://doi.org/10.1007/s40544-015-0086-2

    Article  Google Scholar 

  23. Rivera, J.L., Jennings, G.K., McCabe, C.: Examining the frictional forces between mixed hydrophobic-Hydrophilic alkylsilane monolayers. J. Chem. Phys. 136, 244701 (2012). https://doi.org/10.1063/1.4729312

    Article  CAS  Google Scholar 

  24. Scandella, L., Meyer, E., Howald, L., Lüthi, R., Guggisberg, M., Gobrecht, J., Güntherodt, H.-J.: Friction forces on hydrogen passivated (110) silicon and silicon dioxide studied by scanning force microscopy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 14, 1255–1258 (1996). https://doi.org/10.1116/1.588526

    Article  CAS  Google Scholar 

  25. Tsagkaropoulou, G., Warrens, C.P., Camp, P.J.: Interactions between friction modifiers and dispersants in lubricants: the case of glycerol monooleate and polyisobutylsuccinimide-polyamine. ACS Appl. Mater. Interfaces 11, 28359–28369 (2019). https://doi.org/10.1021/acsami.9b05718

    Article  CAS  Google Scholar 

  26. Greenfield, M.L., Ohtani, H.: Friction and normal forces of model friction modifier additives in simulations of boundary lubrication. Mol. Phys. 117, 3871–3883 (2019). https://doi.org/10.1080/00268976.2019.1670876

    Article  CAS  Google Scholar 

  27. Apóstolo, R.F.G., Tsagkaropoulou, G., Camp, P.J.: Molecular adsorption, self-assembly, and friction in lubricants. J. Mol. Liq. 277, 606–612 (2019). https://doi.org/10.1016/j.molliq.2018.12.099

    Article  CAS  Google Scholar 

  28. Rozanska, X., Delbecq, F., Sautet, P.: Reconstruction and stability of β-cristobalite 001, 101, and 111 surfaces during dehydroxylation. Phys. Chem. Chem. Phys. 12, 14930–14940 (2010). https://doi.org/10.1039/C0CP00287A

    Article  CAS  Google Scholar 

  29. Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 173, 1–38 (2000). https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  30. Lorenz, C.D., Webb, E.B., Stevens, M.J., Chandross, M., Grest, G.S.: Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2. Tribol. Lett. 19, 93–98 (2005). https://doi.org/10.1007/S11249-005-5085-4

    Article  CAS  Google Scholar 

  31. Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638–6646 (1984). https://doi.org/10.1021/ja00334a030

    Article  CAS  Google Scholar 

  32. Cione, A.M., Mazyar, O.A., Booth, B.D., McCabe, C., Jennings, G.K.: Deposition and wettability of [bmim][triflate] on self-assembled monolayers. J. Phys. Chem. C 113, 2384–2392 (2009). https://doi.org/10.1021/jp808098w

    Article  CAS  Google Scholar 

  33. Lewis, J.B., Vilt, S.G., Rivera, J.L., Jennings, G.K., McCabe, C.: Frictional properties of mixed fluorocarbon/hydrocarbon silane monolayers: a simulation study. Langmuir 28, 14218–14226 (2012). https://doi.org/10.1021/la3024315

    Article  CAS  Google Scholar 

  34. Stephenson, S.K., Offeman, R.D., Robertson, G.H., Orts, W.J.: Hydrogen-bond networks in linear, branched and tertiary alcohols. Chem. Eng. Sci. 62, 3019–3031 (2007). https://doi.org/10.1016/j.ces.2007.03.007

    Article  CAS  Google Scholar 

  35. Jorge, M., Gulaboski, R., Pereira, C.M., Cordeiro, M.N.D.S.: Molecular dynamics study of 2-nitrophenyl octyl ether and nitrobenzene. J. Phys. Chem. B 110, 12530–12538 (2006). https://doi.org/10.1021/JP061301J

    Article  CAS  Google Scholar 

  36. Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  37. Crozier, P.S., Rowley, R.L., Henderson, D.: Molecular-dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes. J. Chem. Phys. 114, 7513–7517 (2001). https://doi.org/10.1063/1.1362290

    Article  CAS  Google Scholar 

  38. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984). https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  39. Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984). https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  40. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  41. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992). https://doi.org/10.1063/1.463137

    Article  CAS  Google Scholar 

  42. Booth, B.D., Vilt, S.G., Lewis, J.B., Rivera, J.L., Buehler, E.A., McCabe, C., Jennings, G.K.: Tribological durability of silane monolayers on silicon. Langmuir (2011). https://doi.org/10.1021/la104778q

    Article  Google Scholar 

  43. Reißer, S., Poger, D., Stroet, M., Mark, A.E.: Real cost of speed: the effect of a time-saving multiple-time-stepping algorithm on the accuracy of molecular dynamics simulations. J. Chem. Theory Comput. 13, 2367–2372 (2017). https://doi.org/10.1021/acs.jctc.7b00178

    Article  CAS  Google Scholar 

  44. Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001). https://doi.org/10.1103/PhysRevLett.86.1295

    Article  CAS  Google Scholar 

  45. Homola, A.M., Israelachvili, J.N., McGuiggan, P.M., Gee, M.L.: Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136, 65–83 (1990). https://doi.org/10.1016/0043-1648(90)90072-I

    Article  CAS  Google Scholar 

  46. Popov, V.L., Li, Q., Lyashenko, I.A., Pohrt, R.: Adhesion and friction in hard and soft contacts: theory and experiment. Friction 9, 1688–1706 (2021). https://doi.org/10.1007/s40544-020-0482-0

    Article  Google Scholar 

  47. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004). https://doi.org/10.1103/PhysRevLett.92.134301

    Article  CAS  Google Scholar 

  48. Tonazzi, D., Massi, F., Baillet, L., Culla, A., Di Bartolomeo, M., Berthier, Y.: Experimental and numerical analysis of frictional contact scenarios: from macro stick–slip to continuous sliding. Meccanica 50, 649–664 (2015). https://doi.org/10.1007/s11012-014-0010-2

    Article  Google Scholar 

  49. Khajeh Salehani, M., Irani, N., Nicola, L.: Modeling adhesive contacts under mixed-mode loading. J. Mech. Phys. Solids 130, 320–329 (2019). https://doi.org/10.1016/j.jmps.2019.06.010

    Article  Google Scholar 

  50. Wang, Y., Meng, Z.: Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites–effect of interlayer sliding within graphene sheets. Carbon NY 177, 128–137 (2021). https://doi.org/10.1016/j.carbon.2021.02.071

    Article  CAS  Google Scholar 

  51. Xu, R.-G., Zhang, G., Xiang, Y., Garcia, J., Leng, Y.: Will Polycrystalline platinum tip sliding on a gold(111) surface produce regular stick-slip friction? Langmuir 38, 6808–6816 (2022). https://doi.org/10.1021/acs.langmuir.1c03268

    Article  CAS  Google Scholar 

  52. Yau, S.Y., Yoo, S.S., Penkov, O.V., Kim, D.E.: Wear reduction of borosilicate glass microballs using vapor-phase lubrication with n-Pentanol. Tribol. Trans. 59, 507–512 (2016). https://doi.org/10.1080/10402004.2015.1090044

    Article  CAS  Google Scholar 

  53. Sawyer, W.G., Blanchet, T.A.: Vapor-phase lubrication in combined rolling and sliding contacts: modeling and experimentation. J. Tribol. 123, 572–581 (2000). https://doi.org/10.1115/1.1308039

    Article  Google Scholar 

  54. Müser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)

    Google Scholar 

  55. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 84502 (2003). https://doi.org/10.1103/PhysRevLett.91.084502

    Article  CAS  Google Scholar 

  56. Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: a simple model which made history BT. In: Stein, E. (ed.) The History of Theoretical Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering, pp. 153–168. Springer, Berlin, Heidelberg (2014)

    Chapter  Google Scholar 

  57. Shi, B., Gan, X., Yu, K., Lang, H., Cao, X., Zou, K., Peng, Y.: Electronic friction and tuning on atomically thin MoS2. npj 2D Mater. Appl. 6, 39 (2022). https://doi.org/10.1038/s41699-022-00316-6

    Article  CAS  Google Scholar 

  58. Gianetti, M.M., Guerra, R., Vanossi, A., Urbakh, M., Manini, N.: Thermal friction enhancement in Zwitterionic monolayers. J. Phys. Chem. C 126, 2797–2805 (2022). https://doi.org/10.1021/acs.jpcc.1c09542

    Article  CAS  Google Scholar 

  59. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011). https://doi.org/10.1103/PhysRevLett.106.126101

    Article  CAS  Google Scholar 

  60. Lowrey, D.D., Tasaka, K., Kindt, J.H., Banquy, X., Belman, N., Min, Y., Pesika, N.S., Mordukhovich, G., Israelachvili, J.N.: High-speed friction measurements using a modified surface forces apparatus. Tribol. Lett. 42, 117–127 (2011). https://doi.org/10.1007/S11249-011-9746-1

    Article  Google Scholar 

  61. van der Bondi, A.: Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964). https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  62. Ramírez-Zavaleta, F.I., Torres-Dominguez, V.M., Viramontes-Gamboa, G., Rivera, J.L.: Interfacial forces in free-standing layers of melted polyethylene, from critical to nanoscopic thicknesses. Polymers (Basel) 14, 3865 (2022)

    Article  Google Scholar 

  63. Peña-Obeso, P.J., Huirache-Acuña, R., Ramirez-Zavaleta, F.I., Rivera, J.L.: Stability of non-concentric, multilayer, and fully aligned porous MoS2 nanotubes. Membranes (Basel) 12, 818 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by CONACYT (México) through an infrastructure fellowship (Grant number 268652), and the Universidad Michoacana de San Nicolás de Hidalgo through research funds under the CIC program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JLR, VMB-S, RG-G, FIR-Z, and EL. The first draft of the manuscript was written by JLR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jose Luis Rivera.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra-Gonzalez, R., Bastida-Silva, V.M., Rivera, J.L. et al. n-Pentanol Lubrication of Silica Layers Passivated with Hydroxyl Groups Under Constant Shear Stress and Load and Isothermal Conditions. Tribol Lett 71, 59 (2023). https://doi.org/10.1007/s11249-023-01731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01731-6

Keywords

Navigation